참고문헌
- Adeegbe, D. O. and Nishikawa, H. 2013. Natural and induced T regulatory cells in cancer. Front. Immunol. 4, 190-203.
-
Ambade, A., Satishchandran, A., Saha, B., Gyongyosi, B., Lowe, P., Kodys, K., Catalano, D. and Szabo, G. 2016. Hepatocellular carcinoma is accelerated by NASH involving M2 macrophage polarization mediated by hif-
$1{\alpha}$ induced IL-10. Oncoimmunology 5, e1221557. https://doi.org/10.1080/2162402X.2016.1221557 - Belai, E. B., de Oliveira, C. E., Gasparoto, T. H., Ramos, R. N., Torres, S. A., Garlet, G. P., Cavassani, K. A., Silva, J. S. and Campanelli, A. P. 2014. PD-1 blockage delays murine squamous cell carcinoma development. Carcinogenesis 35, 424-431. https://doi.org/10.1093/carcin/bgt305
- Bingle, L., Brown, N. J. and Lewis, C. E. 2002. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254-265. https://doi.org/10.1002/path.1027
- Biswas, S. K. and Mantovani, A. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889-896. https://doi.org/10.1038/ni.1937
- Cha, H. R., Lee, J. H., Hensel, J. A., Sawant, A. B., Davis, B. H., Lee, C. M., Deshane, J. S. and Ponnazhagan, S. 2016. Prostate cancer-derived cathelicidin-related antimicrobial peptide facilitates macrophage differentiation and polarization of immature myeloid progenitors to protumorigenic macrophages. Prostate 76, 624-636. https://doi.org/10.1002/pros.23155
- Chen, Y., Zhang, S., Wang, Q. and Zhang, X. 2017. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J. Hematol. Oncol. 10, 36-49. https://doi.org/10.1186/s13045-017-0408-0
- Coussens, L. M. and Pollard, J. W. 2011. Leukocytes in mammary development and cancer. Cold Spring Harb. Perspect. Biol. 3, a003285.
- De, I., Steffen, M. D., Clark, P. A., Patros, C. J., Sokn, E., Bishop, S. M., Litscher, S., Maklakova, V. I., Kuo, J. S., Rodriguez, F. J. and Collier, L. S. 2016. CSF1 overexpression promotes high-grade glioma formation without impacting the polarization status of glioma-associated microglia and macrophages. Cancer Res. 76, 2552-2560. https://doi.org/10.1158/0008-5472.CAN-15-2386
- Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., Coussens, L. M., Karin, M., Goldrath, A. W. and Johnson, R. S. 2010. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465-7475. https://doi.org/10.1158/0008-5472.CAN-10-1439
- Duraiswamy, J., Freeman, G. J. and Coukos, G. 2013. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res. 73, 6900-6912. https://doi.org/10.1158/0008-5472.CAN-13-1550
- Gajewski, T. F., Schreiber, H. and Fu, Y. X. 2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014-1022. https://doi.org/10.1038/ni.2703
- Greaves, P. and Gribben, J. G. 2013. The role of B7 family molecules in hematologic malignancy. Blood 121, 734-744. https://doi.org/10.1182/blood-2012-10-385591
- Greten, F. R. and Karin, M. 2004. The IKK/NF-kappaB activation pathway- a target for prevention and treatment of cancer. Cancer Lett. 206, 193-199. https://doi.org/10.1016/j.canlet.2003.08.029
- Grivennikov, S. I., Greten, F. R. and Karin, M. 2010. Immunity, inflammation, and cancer. Cell 140, 883-899. https://doi.org/10.1016/j.cell.2010.01.025
- Grivennikov, S. I., Wang, K., Mucida, D., Stewart, C. A., Schnabl, B., Jauch, D., Taniguchi, K., Yu, G. Y., Osterreicher, C. H., Hung, K. E., Datz, C., Feng, Y., Fearon, E. R., Oukka, M., Tessarollo, L., Coppola, V., Yarovinsky, F., Cheroutre, H., Eckmann, L., Trinchieri, G. and Karin, M. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254-258. https://doi.org/10.1038/nature11465
- Kong, L., Zhou, Y., Bu., H, Lv, T., Shi, Y. and Yang, J. 2016. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. J. Exp. Clin. Cancer Res. 35, 131-142. https://doi.org/10.1186/s13046-016-0412-1
- Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C. and Zheng, L. 2009. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327-1337. https://doi.org/10.1084/jem.20082173
- Li, Y., Zheng, Y., Li, T., Wang, Q., Qian, J., Lu, Y., Zhang, M., Bi, E., Yang, M., Reu, F., Yi, Q. and Cai, Z. 2015. Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget 6, 24218-24229.
- Loke, P. and Allison, J. P. 2003. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl. Acad. Sci. USA. 100, 5336-5341. https://doi.org/10.1073/pnas.0931259100
- Lu, T., Ramakrishnan, R., Altiok, S., Youn, J. I., Cheng, P., Celis, E., Pisarev, V., Sherman, S., Sporn, M. B. and Gabrilovich, D. 2011. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest. 121, 4015-4029. https://doi.org/10.1172/JCI45862
- Ma, R., Ji, T., Chen, D., Dong, W., Zhang, H., Yin, X., Ma, J., Liang, X., Zhang, Y., Shen, G., Quin, X. and Huang, B. 2016. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression. Oncoimmunology 5, e1118599. https://doi.org/10.1080/2162402X.2015.1118599
- Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V. and Chouaib, S. 2014. PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781-790. https://doi.org/10.1084/jem.20131916
- Noy, R. and Pollard, J. W. 2014. Tumor-associated macrophage: From mechanisms to therapy. Immunity 41, 866-879. https://doi.org/10.1016/j.immuni.2014.09.021
- Poh A. H. and Ernst, M. 2018. Targeting macrophages in Cancer: From Bench to besides. Front Oncol. 8, 49-65. https://doi.org/10.3389/fonc.2018.00049
- Qian, B. Z. and Pollard, J. W. 2010. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51. https://doi.org/10.1016/j.cell.2010.03.014
- Quail, D. F. and Joyce, J. A. 2013. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437. https://doi.org/10.1038/nm.3394
- Rohan, T. E., Xue, X., Lin, H. M., D'Alfonso, T. M., Ginter, P. S., Oktay, M. H., Robinson, B. D., Ginsberg, M., Gertler, F. B., Glass, A. G., Sparano, J. A., Condeelis, J. S. and Jones, J. G. 2014. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J. Natl. Cancer Inst. 106, 1-11. https://doi.org/10.1093/jnci/dju200
- Sharda, D. R., Yu, S., Ray, M., Squadrito, M. L., De Palma, M., Wynn, T. A., Morris, S. M. Jr. and Hankey, P. A. 2011. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J. Immunol. 187, 2181-2192. https://doi.org/10.4049/jimmunol.1003460
- Teng, F., Tian, W. Y., Wang, Y. M., Zhang, Y. F., Guo, F., Zhao, J., Gao, C. and Xue, F. X. 2016. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J. Hematol. Oncol. 9, 8-23. https://doi.org/10.1186/s13045-015-0231-4
- Tripathi, C., Tewari, B. N., Kanchan, R. K., Baghel, K. S., Nautiyal, N., Shrivastava, R., Kaur, H., Bhatt, M. L. and Bhadauria, S. 2014. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 5, 5350-5368.
- Wang, H., Shao, Q., Sun, J., Ma, C., Gao, W., Wang, Q., Zhao, L. and Qu, X. 2016. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1. Oncoimmunology 5, e1122157. https://doi.org/10.1080/2162402X.2015.1122157
- Yang, L., Wang, F., Wang, L., Huang, L., Wang, J., Zhang, B. and Zhang, Y. 2015. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 6, 10592-10603.
- Zhao, P., Gao, D., Wang, Q., Song, B., Shao, Q., Sun, J., Ji, C., Li, X., Li, P. and Qu, X. 2015. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol. Immunol. 12, 692-699. https://doi.org/10.1038/cmi.2014.108