DOI QR코드

DOI QR Code

Biological Clock and Ultradian Metabolic Oscillation in Saccharomyces cerevisiae

Saccharomyces cerevisiae의 생물시계와 초단기 대사진동

  • Kwon, Chong Suk (Department of Food and Nutrition, Andong National University) ;
  • Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University)
  • Received : 2018.07.17
  • Accepted : 2018.08.20
  • Published : 2018.08.30

Abstract

Biological clocks are the basis of temporal control of metabolism and behavior. These clocks are characterized by autonomous free-running oscillation and temperature compensation and are found in animals, plants, and microorganisms. To date, various biological clocks have been reported. These include clocks governing hibernation, sleep/wake, heartbeat, and courtship song. These clocks can be differentiated by the period of rhythms, for example, infradian rhythms (> 24-hr period), circadian rhythms (24-hr period), and ultradian rhythms (< 24-hr period). In yeast (Saccharomyces cerevisiae), at least five different autonomous oscillations have been reported; (1) glycolytic oscillations (T = 1~30 min), (2) cell cycle-dependent oscillations (T = 2~16 hr), (3) ultradian metabolic oscillations (T = 15~50 min), (4) yeast colony oscillations (T = a few hours), and (5) circadian oscillations (T = 24 hr). In this review, we discuss studies on oscillators, pacemakers, and synchronizers, in addition to the application of biological clocks, to demonstrate the nature of autonomous oscillations, especially ultradian metabolic oscillations of S. cerevisiae.

생물시계(Biological clock)는 생명체에서 나타나는 반복되는 자율적인 리듬을 말하며, 단일세포는 물론 다세포 생명체의 기본적인 대사와 이에 따른 표현형과 행동을 직접적으로 조절하고 있다. 이러한 생물시계는 동면 리듬, 수면 리듬, 심장박동 리듬 및 짝짓기 노래 리듬 등 매우 다양하며, 24시간 이상의 주기를 infradian rhythm, 24시간 주기를 circadian rhythm, 24시간 이내의 짧은 주기를 ultradian rhythm으로 구분한다. 효모 Saccharomyces cerevisiae는 최소 5종 이상의 반복되는 자율적인 리듬이 알려져 있으며, 이중 일부는 생체시계로 인식되고 있다. 본 리뷰에서는 Saccharomyces cerevisiae의 glycolytic oscillation (T= 1~30분), cell cycle-dependent oscillation (T= 2~16 시간), ultradian metabolic oscillation (T= 15~50분), yeast colony oscillation (T= 수 시간) 및 circadian oscillation (T= 24시간)에 대한 연구 결과를 제시하고, 특히 ultradian metabolic oscillation의 특징, 집단 동조인자(population synchronizer), 동조인자의 조절 기작 및 효모 생물시계의 대사공학 분야의 이용성을 제시하여 효모를 이용한 동적 대사조절 및 생물시계 연구가 가능함을 제시하였다.

Keywords

References

  1. Abe, K. and Kimura, H. 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066-1071 https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996
  2. Adams, C. A., Kuriyama, H., Lloyd, D. and Murray, D. B. 2003. The Gts1 protein stabilizes the autonomous oscillator in yeast. Yeast 20, 463-470. https://doi.org/10.1002/yea.976
  3. Barrio, R. A., Zhang, L. and Maini, P. K. 1997. Hierarchically coupled ultradian oscillators generating robust circadian rhythms. Bull. Math. Biol. 59, 517-532. https://doi.org/10.1007/BF02459463
  4. Benjamin, J. T. D. and Joel, M. K. 2017. Live cell imaging reveals pH oscillations in Saccharomyces cerevisiae during metabolic transitions. Sci. Rep. 7, 13922. https://doi.org/10.1038/s41598-017-14382-0
  5. Bier, M., Teusink, B., Kholodenko, B. N. and Westerhoff, H. V. 1996. Control analysis of glycolytic oscillations. Biophys. Chem. 62, 15-24. https://doi.org/10.1016/S0301-4622(96)02195-3
  6. Cazzador, L. 1991. Analysis of oscillations in yeast continuous cultures by a new simplified model. Bull. Math. Biol. 53, 685-700. https://doi.org/10.1007/BF02461549
  7. Chen, C. I. and McDonald, K. A. 1990. Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism. Biotechnol. Bioeng. 36, 28-38. https://doi.org/10.1002/bit.260360105
  8. Cui, W., Chen, H., Zhu, K., Jin, Q., Xie, Y., Cui, J., Xia, Y., Zhang, J. and Shen, W. 2014. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostasis. PLoS One 9, e109669. https://doi.org/10.1371/journal.pone.0109669
  9. Dowse, H. B. and Ringo, J. M. 1987. Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J. Biol. Rhythms 2, 65-76. https://doi.org/10.1177/074873048700200106
  10. du Preez, F. B., van Niekerk, D. D., Kooi, B., Rohwer, J. M. and Snoep, J. L. 2012. From steady-state to synchronized yeast glycolytic oscillations I: model construction. FEBS J. 279, 2810-2822. https://doi.org/10.1111/j.1742-4658.2012.08665.x
  11. Eelderink-Chen, Z., Mazzotta, G., Sturre, M., Bosman, J., Roenneberg, T. and Merrow, M. 2010. A circadian clock in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 117, 2043-2047.
  12. Garcia-Mata, C. and Lamattina, L. 2010. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol. 188, 977-984. https://doi.org/10.1111/j.1469-8137.2010.03465.x
  13. Gustavsson, A. K., van Niekerk, D. D., Adiels, C. B., Goksor, M. and Snoep, J. L. 2014. Heterogeneity of glycolytic oscillatory behavior in individual yeast cells. FEBS Lett. 588, 3-7. https://doi.org/10.1016/j.febslet.2013.11.028
  14. Hans, M. A., Heinzle, E. and Wittmann, C. 2003. Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae. Biotechnol. Bioeng. 82, 143-151. https://doi.org/10.1002/bit.10553
  15. Henson, M. A. 2004. Modeling the synchronization of yeast respiratory oscillations. J. Theor. Biol. 231, 443-458. https://doi.org/10.1016/j.jtbi.2004.07.009
  16. Isogai, A., Utsunomiya, H., Kanda, R. and Iwata, H. 2005. Changes in the aroma compounds of sake during aging. J. Agric. Food Chem. 53, 4118-4123. https://doi.org/10.1021/jf047933p
  17. Jules, M., François, J. and Parrou, J. L. 2005. Autonomous oscillations in Saccharomyces cerevisiae during batch cultures on trehalose. FEBS J. 272, 1490-1500. https://doi.org/10.1111/j.1742-4658.2005.04588.x
  18. Keulers, M., Suzuki, T., Satroutdinov, A. D. and Kuriyama, H. 1996. Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol. FEMS Microbiol. Lett. 142, 253-258. https://doi.org/10.1111/j.1574-6968.1996.tb08439.x
  19. Klevecz, R. R., Bolen, J., Forrest, G. and Murray, D. B. 2004. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl. Acad. Sci. USA. 101, 1200-1205. https://doi.org/10.1073/pnas.0306490101
  20. Kwak, W. J., Kwon, G. S., Jin, I., Kuriyama, H. and Sohn, H. Y. 2003. Involvement of oxidative stress in the regulation of $H_2S$ production during ultradian metabolic oscillation of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 219, 99-104. https://doi.org/10.1016/S0378-1097(02)01198-9
  21. Liu, W., Wang, J., Mitsui, K., Shen, H. and Tsurugi, K. 2002. Interaction of the GTS1 gene product with glyceraldehyde-3-phosphate dehydrogenase 1 required for the maintenance of the metabolic oscillations of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 269, 3560-3569. https://doi.org/10.1046/j.1432-1033.2002.03047.x
  22. Lloyd, D. and Murray, D. B. 2006. The temporal architecture of eukaryotic growth. FEBS Lett. 580, 2830-2835. https://doi.org/10.1016/j.febslet.2006.02.066
  23. Lloyd, D., Eshantha, L., Salgado, J., Turner, M. P. and Murray, D. B. 2002. Respiratory oscillations in yeast: clock-driven mitochondrial cycles of energization. FEBS Lett. 519, 41-44. https://doi.org/10.1016/S0014-5793(02)02704-7
  24. Lloyd, D., Salgado, L. E. J., Turner, M. P., Suller, M. T. E. and Murray, D. 2002. Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiology 148, 3715-3724. https://doi.org/10.1099/00221287-148-11-3715
  25. Machne, R. and Murray, D. B. 2012. The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin. PLoS One 7, e37906. https://doi.org/10.1371/journal.pone.0037906
  26. Murray, D. B., Engelen, F., Lloyd, D. and Kuriyama, H. 1999. Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology 145, 2739-2745. https://doi.org/10.1099/00221287-145-10-2739
  27. Murray, D. B., Klevecz, R. R. and Lloyd, D. 2003. Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Exp. Cell Res. 287, 10-15. https://doi.org/10.1016/S0014-4827(03)00068-5
  28. Murray, D. B., Roller, S., Kuriyama, H. and Lloyd, D. 2001. Clock control of ultradian respiratory oscillation found during yeast continuous culture. J. Bacteriol. 183, 7253-7259. https://doi.org/10.1128/JB.183.24.7253-7259.2001
  29. Paetkau, V., Edwards, R. and Illner, R. 2006. A model for generating circadian rhythm by coupling ultradian oscillators. Theor. Biol. Med. Model. 3, 12. https://doi.org/10.1186/1742-4682-3-12
  30. Palkova, Z. and Forstova, J. 2000. Yeast colonies synchronise their growth and development. J. Cell Sci. 113, 1923-1928.
  31. Palkova, Z., Devaux, F., Icicova, M., Minarikova, L., Le Crom, S. and Jacq, C. 2002. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol. Biol. Cell 13, 3901-3914. https://doi.org/10.1091/mbc.e01-12-0149
  32. Palkova, Z., Janderova, B., Gabriel, J., Zikanova, B., Pospisek, M. and Forstova, J. 1997. Ammonia mediates communication between yeast colonies. Nature 390, 532-536. https://doi.org/10.1038/37398
  33. Ray, S. and Reddy, A. B. 2016. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness. Bioassys 38, 394-405. https://doi.org/10.1002/bies.201500056
  34. Refinetti, R. 2012. Integration of biological clocks and rhythms. Compr. Physiol. 2, 1213-1239.
  35. Reinke, H. and Gatfield, D. 2006. Genome-wide oscillation of transcription in yeast. Trends Biochem. Sci. 31, 189-191. https://doi.org/10.1016/j.tibs.2006.02.001
  36. Richard, P. 2003. The rhythm of yeast. FEMS Microbiol. Rev. 27, 547-557. https://doi.org/10.1016/S0168-6445(03)00065-2
  37. Robertson, J. B., Davis, C. R. and Johnson, C. H. 2013. Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc. Natl. Acad. Sci. USA. 110, 21130-21135. https://doi.org/10.1073/pnas.1313369110
  38. Saito, T., Mitsui, K., Hamada, Y. and Tsurugi, K. 2002. Regulation of the Gts1p level by the ubiquitination system to maintain metabolic oscillations in the continuous culture of yeast. J. Biol. Chem. 277, 33624-33631 https://doi.org/10.1074/jbc.M201909200
  39. Satroutdinov, A. D., Kuriyama, H. and Kobayashi, H. 1992. Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol. Lett. 77, 261-267.
  40. Silva, A. S. and Yunes, J. A. 2006. Conservation of glycolytic oscillations in Saccharomyces cerevisiae and human pancreatic beta-cells: a study of metabolic robustness. Genet. Mol. Res. 5, 525-535.
  41. Sohn, H. and Kuriyama, H. 2001. The role of amino acids in the regulation of hydrogen sulfide production during ultradian respiratory oscillation of Saccharomyces cerevisiae. Arch. Microbiol. 176, 69-78. https://doi.org/10.1007/s002030100295
  42. Sohn, H. and Kuriyama, H. 2001. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase. Yeast 18, 125-135. https://doi.org/10.1002/1097-0061(20010130)18:2<125::AID-YEA655>3.0.CO;2-9
  43. Sohn, H. Y., Kum, E. J., Kwon, G. S., Jin, I. and Kuriyama, H. 2005. Regulation of branched-chain, and sulfur-containing amino acid metabolism by glutathione during ultradian metabolic oscillation of Saccharomyces cerevisiae. J. Microbiol. 43, 375-380.
  44. Sohn, H. Y., Kum, E. J., Kwon, G. S., Jin, I., Adams, C. A. and Kuriyama, H. 2005. GLR1 plays an essential role in the homeodynamics of glutathione and the regulation of $H_2S$ production during respiratory oscillation of Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 69, 2450-2454. https://doi.org/10.1271/bbb.69.2450
  45. Sohn, H. Y., Murray, D. B. and Kuriyama, H. 2000. Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony. Yeast 16, 1185-1190. https://doi.org/10.1002/1097-0061(20000930)16:13<1185::AID-YEA619>3.0.CO;2-W
  46. Uno, T., Wang, J., Mitsui, K., Umetani, K., Tamura, K. and Tsurugi, K. 2002. Ultradian rhythm of trehalose levels coupled to heat resistance in continuous cultures of the yeast Saccharomyces cerevisiae. Chronobiol. Int. 19, 361-375. https://doi.org/10.1081/CBI-120002916
  47. Vadivel, A., Alphonse, R. S., Ionescu, L., Machado, D. S., O'Reilly, M., Eaton, F., Haromy, A., Michelakis, E. D. and Thebaud, B. 2014. Exogenous hydrogen sulfide ($H_2S$) protects alveolar growth in experimental $O_2$-induced neonatal lung injury. PLoS One 9, e90965. https://doi.org/10.1371/journal.pone.0090965
  48. Wang, J., Liu, W., Uno, T., Tonozuka, H., Mitsui, K. and Tsurugi, K. 2000. Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 189, 9-13. https://doi.org/10.1111/j.1574-6968.2000.tb09198.x
  49. Wheeler, D. A., Kyriacou, C. P., Greenacre, M. L., Yu, Q., Rutila, J. E., Rosbash, M. and Hall, J. C. 1991. Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science 251, 1082-1085. https://doi.org/10.1126/science.1900131
  50. Wolf, J., Sohn, H., Heinrich, R. and Kuriyama, H. 2001. Mathematical analysis of a mechanism for autonomous metabolic oscillations in continuous culture of Saccharomyces cerevisiae. FEBS Lett. 499, 230-234. https://doi.org/10.1016/S0014-5793(01)02562-5
  51. Zhang, H., Jiao, H., Jiang, C. X., Wang, S. H. and Wei, Z. J. 2010. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol. Plant 32, 849-857. https://doi.org/10.1007/s11738-010-0469-y