DOI QR코드

DOI QR Code

타타리메밀싹의 루틴 함량 향상을 위한 LED 광량 효과와 항산화 활성

Effect of LED Light Strength for Enhancing Rutin Content in Tatary Buckwheat Sprouts and Antioxidant Activity

  • 신지영 (부경대학교 식품공학과) ;
  • 강민재 (부경대학교 미생물학과) ;
  • 김현정 (식품의약품안전평가원 첨가물포장과) ;
  • 박지인 (부경대학교 식품공학과) ;
  • 양지영 (부경대학교 식품공학과) ;
  • 김군도 (부경대학교 미생물학과)
  • Shin, Jiyoung (Department of Food Science & Technology, Pukyoung National University) ;
  • Kang, Min-jae (Department of Microbiology, Pukyoung National University) ;
  • Kim, Hyeon-jeong (Food Additives and Packing Division, National Institute of Food and Drug Safety Evaluation) ;
  • Park, Ji-In (Department of Food Science & Technology, Pukyoung National University) ;
  • Yang, Ji-young (Department of Food Science & Technology, Pukyoung National University) ;
  • Kim, Gun-Do (Department of Microbiology, Pukyoung National University)
  • 투고 : 2018.08.14
  • 심사 : 2018.08.28
  • 발행 : 2018.08.30

초록

본 연구는 메밀의 발아 조건을 달리하여 메밀싹에서 생리활성 물질인 루틴의 함량을 높이고자 하였다. 가장 많이 재배되는 일반메밀과 타타리메밀을 이용하였고, 두 종자의 루틴 함량을 비교한 결과, 타타리메밀의 루틴 함량이 487 ppm으로 일반메밀과 비교하여 약 36배 높게 나타났다. 발아 후 싹으로 성장에 따른 루틴 함량을 분석한 결과, 일반메밀과 타타리메밀의 싹 모두 길이 생장에 따라서 루틴 함량도 증가하는 경향을 나타내었다 또한, 발아 및 싹의 성장 시에 빛을 조사한 일반메밀과 타타리메밀의 싹은 루틴 함량이 빛을 조사하지 않은 경우에 비해 상대적으로 높았다. 타타리메밀의 경우 10 cm 이상의 싹은 4,579 ppm(빛을 조사하지 않은 경우), 5,160 ppm(빛을 조사한 경우)로 나타났다. 메밀싹의 성장 시에 빛이 루틴의 합성에 영향을 끼지는 것으로 판단되었다. 이에 LED 빛의 세기를 2,000 Lux에서 22,000 Lux까지 점차 증가시키면서 타타리메밀싹을 제조하였고, 가장 높은 세기인 22,000 Lux에서 가장 높은 루틴 함량을 가졌다. 타타리메밀싹의 열수 추출물은 85.47 ppm, 에탄올 추출물의 경우에는 1,225.85 ppm의 루틴 함량을 나타내었다. 14,000 Lux까지는 급격하게 루틴 함량이 증가하였으나, 그 후에는 증가폭이 줄어들어 메밀싹은 14,000 Lux에서 10 cm 이상 성장한 것이 최적의 루틴을 포함하는 메밀싹 제조에 가장 적합하다고 판단되었다. 열처리($70{\sim}90^{\circ}C$의 온도 범위)를 한 추출물의 루틴 함량이 미처리군과 비교하여 유의적인 차이를 나타내지 않았다. 이 결과 메밀에서 추출한 루틴은 열안정성을 가진다고 판단되었다.

This study aimed to enhance rutin contents by controlling germination condition for manufacturing buckwheat sprouts. Two kinds of buckwheat, a common buckwheat (Fagopyrum esculentum Moench) and a tartary buckwheat (Fagopyrum tataricum Gaertner) were used. By comparing the rutin content of two buckwheats, tartary buckwheat was 487 ppm, about 36 times higher than common buckwheat. Both common buckwheat and tartary buckwheat which germinated and grew under the light had higher rutin content relatively. In case of tartary buckwheat, rutin content of over 10 cm sprout was 4,579 ppm (without the light), and 5,160 ppm (with the light). Furthermore, tartary buckwheat was germinated and grew under different light strengths from 2,000 to 22,000 Lux. The rutin contents of tartary buckwheat sprout that was grown under the 22,000 Lux light was the highest. The rutin content was increased dramatically at 14,000 Lux of light. From 14,000 to 22,000 Lux, there was a little change on rutin content. Therefore, the condition of 14,000 Lux light was determined optimal for manufacturing tartary buckwheat sprouts. Also, rutin contents of extracts treated with 60, 70, 80 and $90^{\circ}C$ during different time had no significant difference. Therefore, rutin of tartary buckwheat sprout extract had thermostability up to $90^{\circ}C$.

키워드

참고문헌

  1. Bonafaccia, G., Marocchini, M. and Kreft, I. 2003. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 80, 9-15. https://doi.org/10.1016/S0308-8146(02)00228-5
  2. Cervellati, R., Renzulli, C., Guerra, M. C. and Speroni, E. 2002. Evaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs-Rauscher reaction method. J. Agri. Food Chem. 50, 7504-7509. https://doi.org/10.1021/jf020578n
  3. Cho, M. L., Choi, S. I., Lee, J. H., Cho, B. J., Lee, H. K., Rhee, S. K., Lim, J. H. and Lee, O. H. 2016. Evaluation of quality characteristics of Korean and Chinese buckwheat. Kor. J. Food Presev. 23, 225-232. https://doi.org/10.11002/kjfp.2016.23.2.225
  4. Donor, O. N., Stojanovska, L., Ginn, J. and Vasiljevic, T. 2012. Germinated grains-sources of bioactive compounds. Food Chem. 135, 950-959. https://doi.org/10.1016/j.foodchem.2012.05.058
  5. Eun, C. S., Hwang, E. Y., Lee, S. O., Yang, S. A. and Yu, M. H. 2016. Anti-oxidant an anti-inflammatory activities of barley sprout extract. J. Life Sci. 26, 537-544. https://doi.org/10.5352/JLS.2016.26.5.537
  6. Fabjan, N., Rode, J., Kosir, I. J., Wang, Z., Zhang, Z. and Kreft, I. 2003. Tartary Buckwheat (Fagopyrum tatarium Gaertn.) as a source of dietary rutin and quercetin. J. Argric. Food Chem. 51, 6452-6455. https://doi.org/10.1021/jf034543e
  7. Kim, E. O., Lee, K. T. and Choi, S. W. 2008. Chemical comparison of germinated- and ungerminated-safflower (Carthamus tictorius) seeds. J. Kor. Soc. Food Sci. Nutr. 37, 1162-1167. https://doi.org/10.3746/jkfn.2008.37.9.1162
  8. Kreft, I., Fabjan, N. and Yasumoto, K. 2006. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem. 98, 508-512. https://doi.org/10.1016/j.foodchem.2005.05.081
  9. Kreft, S., Knapp, M. and Kreft, I. 1999. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agri. Food Chem. 47, 4649-4652. https://doi.org/10.1021/jf990186p
  10. Lee, E. H. and Kim, C. J. 2008. Nutritional changes of buckwheat during germination. Kor. J. Food. Culture 23, 121-129.
  11. Ma, Y., Xiong, Y. L., Zhai, J., Zhu, H. and Dziubla, T. 2010. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chem. 118, 582-588. https://doi.org/10.1016/j.foodchem.2009.05.024
  12. Maeng, Y. S., Park, H. K. and Kwon, T. B. 1990. Analysis of rutin contents in buckwheat and buckwheat food. Kor. J. Food Sci. Technol. 22, 732-737.
  13. Moongngarm, A. and Saetung, N. 2010. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem. 122, 782-788. https://doi.org/10.1016/j.foodchem.2010.03.053
  14. Park, B. J., Park, J. I., Chang, K. J. and Park, C. H. 2005. Comparison in rutin content of tartary buckwheat (Fagopyrum tataricum). J. Plant Res. 18, 246-250.
  15. Tsurunaga, Y., Takahashi, T. Katsuve, T., Kudo, A., Kuramitsu, O., Ishiwata, M. and Matsumoto, S. 2013. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chem. 141, 552-556. https://doi.org/10.1016/j.foodchem.2013.03.032
  16. Yoo, M. Y., Kim, S. K. and Yang, J. Y. 2004. Characterization of an antioxidant from sporophyll of Undaria pinnatifida. Kor. J. Miocrobial. Biotechonol. 32, 307-311.
  17. Yoon, B. R., Cho, B. J., Lee, H. K., Kim, D. J., Rhee, S. K., Hong, H. D., Kim, K. T., Cho, C. W., Choi, H. S., Lee, B. Y. and Lee, O. H. 2012. Antioxidant and anti-adipogenic effects of ethanolic extracts from tartary and common buckwheats. Kor J. Food Preserv. 19, 123-130. https://doi.org/10.11002/kjfp.2012.19.1.123
  18. Yoon, S. J., Cho, N. J., Na, S. H., Kim, Y. H. and Kim, Y. M. 2006. Development of optimum rutin extraction process from Fagopyrum tataricum. J. East Asian Soc. Diet. Life. 16, 573-577.
  19. Zhang, Z. L., Zhou, M. L., Tang, Y., Li, F. L., Tang, Y. X., Shao, J. R., Xue, W. T. and Wu, Y. M. 2012. Bioactive compounds in functional buckwheat food. Food Res. Int. 49, 389-395. https://doi.org/10.1016/j.foodres.2012.07.035