DOI QR코드

DOI QR Code

Aspergillus niger가 생산하는 transglucosidase의 최적 생산 조건 확립

Establishment of Optimal Production Conditions of Transglucosidase Produced by Aspergillus niger

  • 이준엽 (국립안동대학교 생명과학과) ;
  • 강성호 (국립안동대학교 생명과학과) ;
  • 김종식 (국립안동대학교 생명과학과) ;
  • 정정욱 (국립안동대학교 생명과학과)
  • Lee, Jun-Yeob (Department of Biological Sciences, Andong National University) ;
  • Gang, Seongho (Department of Biological Sciences, Andong National University) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University) ;
  • Chung, Chungwook (Department of Biological Sciences, Andong National University)
  • 투고 : 2018.06.09
  • 심사 : 2018.08.02
  • 발행 : 2018.08.30

초록

본 연구에서는 Aspergillus niger 유래 TG의 최적 생산 조건을 연구하기 위해, A. niger 6 종을 이용하여 감자전분 1.5%, 효모추출물 1.0%, $KH_2PO_4$ 0.1%, 40%(v/v) volume의 배지를 기본 조성으로 하는 배지를 사용하였다. 기본 조성의 배지의 초기 pH를 달리하여 $30^{\circ}C$, 150 rpm의 조건으로 20일 동안 5일 간격으로 배양을 하여 TG 활성을 측정한 결과 초기 pH 5.0, 배양 15일, 그리고 A. niger KCTC6913 균주에서 가장 높은 TG 활성을 확인하였다. TG 생산에 유리한 탄소원, 질소원을 확립하기 위해 5 종의 다른 탄소원(감자 전분, 고구마 전분, 옥수수 전분, 밀 전분, 덱스트린) 또는 3종의 다른 질소원(효모추출물, 맥아추출물 및 쇠고기추출물)을 이용하여 초기 pH 5.0, 15일 배양한 후 TG 활성을 측정한 결과, 기본 조성 배지인 감자 전분 및 효모추출물에서 가장 높은 TG 활성을 확인 하였다. 또한 A. niger KCTC6913 균주는 호기적 조건 및 탄소원:질소원의 비율을 조절함에 따라 TG 생산이 증가함을 확인하였다. 확립된 최적 배지 및 배양 조건에서 TG 활성을 평가하기 위해 기본배지 및 A. niger 배양에 널리 이용되는 PDB 배지를 대조군으로 하여 비교한 결과 기본 조성의 배지에 비해 1.3배, PDB 배지에 비해 4배 높은 TG 활성을 확인 하였다. 종합적으로 이러한 연구결과는 A. niger 유래의 TG를 산업적으로 이용하기 위한 최적 배양 배지 및 배양 조건을 성공적으로 수립하였음을 시사한다.

In this study, transglucosidase (TG), an enzyme produced by Aspergillus niger, synthesized isomaltooligosaccharide from ${\alpha}-(1{\rightarrow}4)$ linked substrates. The highest TG-producing A. niger KCTC6913 was selected from six kinds of species, and optimized TG producing conditions were established. Five different carbon sources (potato starch, sweet potato starch, corn starch, wheat starch, and dextrin) and three different nitrogen sources (yeast extract, malt extract, and beef extract) were tested to establish the carbon and nitrogen sources favorable for TG production. Measurements of TG activity after an initial culture at pH 5.0 for 15 days revealed that potato starch and yeast extract, which are basic culture media, resulted in the highest TG activity. In addition, A. niger KCTC6913 increased TG production under aerobic conditions and a controlled carbon/nitrogen ratio. In conclusion, to evaluate TG activity in the established optimal medium, it is confirmed that the basal and potato dextrose broth medium were used as a control, and the highest TG production was measured, which was highlighted in the established optimal medium.

키워드

참고문헌

  1. Ahn, J. W., Hong, S. S., Park, K. W. and Seo, J. H. 1996. Reaction mode of transglucosidase from Aspergillus niger for production of isomaltooligosaccharides. Kor. J. Food Sci. Technol. KJFST. 28, 273-278.
  2. Bailey, C. J. 1999. Insulin resistance and antidiabetic drugs. Biochem. Pharmacol. 58, 1511-1520. https://doi.org/10.1016/S0006-2952(99)00191-4
  3. Brizova, K., Kralova, B., Demnerova, K. and Vins, I. 1992. Isolation and characterization of alpha-glucosidase from Aspergillus niger. J. Chromatogr. 593, 125-131. https://doi.org/10.1016/0021-9673(92)80276-Z
  4. Chen, W. C., Hung, T. F and Lee, S. L. 1997. Production of glucosyl-transferring enzyme by Aspergillus niger in batch cultures. Biotechnol. Lett. 19, 949-951. https://doi.org/10.1023/A:1018374612403
  5. Chen, G. G., Li, W., Zhang, Y. K., Qin, Y. L., Wu, K. Y. and Liang, Z. Q. 2011. A high-throughput method for screening of Aspergillus niger mutants with high transglycosylation activity by detecting non-fermentable reducing sugar. World J. Microbiol. Biotechnol. 27, 1519-1523. https://doi.org/10.1007/s11274-010-0595-0
  6. Dillmann, W. H. 1980. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 29, 579-582. https://doi.org/10.2337/diab.29.7.579
  7. Hesta, M., Debraekeleer, J., Janssens, G. P. and De Wilde, R. 2001. The effect of a commercial high-fibre diet and an iso-malto-oligosaccharide-supplemented diet on post-prandial glucose concentrations in dogs. J. Anim. Physiol. Anim. Nutr. (Berl) 85, 217-221. https://doi.org/10.1046/j.1439-0396.2001.00326.x
  8. Jafari, A. R., Sarrafzadeh, M. H., Alemzadeh, I. and Vosoughi, M. 2007. Effect of stirrer speed and aeration rate on the production of glucose oxidase by Aspergillus niger. Int. J. Biol. Sci. 7, 270-275. https://doi.org/10.3923/jbs.2007.270.275
  9. Kaneko, T., Kohmoto, T., Kikuchi, H., Fukui, F., Shiota, M., Yatake, T., Takaku, H. and Iino, H. 1992. Digestibility of isomaltooligosaccharides by rats and effects on serum lipids. J. Agric. Chem. Soc. Jpn. 66, 1211-1220.
  10. Kang, J. R., Lee, S. J., Kwon, H. J., Kwon, M. H. and Sung, N. J. 2012. Establishment of extraction conditions for the optimization of the black garlic antioxidant activity using the response surface methodology. Kor. J. Food. Preserv. 19, 577-585. https://doi.org/10.11002/kjfp.2012.19.4.577
  11. Kazemi, S., Khayati, G. and Faezi-Ghasemi, M. 2016. Beta-galactosidase production by Aspergillus niger ATCC 9142 using inexpensive substrates in solid-state fermentation: optimization by orthogonal arrays design. Iran. Biomed. J. 20, 287-294.
  12. Ketabi, A., Dieleman, L. and Ganzle, M. 2011. Influence of isomalto-oligosaccharides on intestinal microbiota in rats. J. Appl. Microbiol. 110, 1297-1306. https://doi.org/10.1111/j.1365-2672.2011.04984.x
  13. Kim, D. J., Kim, J. M., Kim, T. H., Baek, J. M., Kim, H. S. and Choe, M. 2010. Effects of mixed extract from lycium chinense, cordyceps militaris, and acanthopanax senticosus on glucose-regulating enzymes of HepG2 in hyperglycemic conditions. J. Kor. Soc. Food. Sci. Nutr. 39, 1257-1262. https://doi.org/10.3746/jkfn.2010.39.9.1257
  14. Kim, H. S., Kim, T. W., Kim, D. J., Kim, K. K. and Choe, M. 2013. Effects of medicinal plant water extracts on expression of anti-diabetic enzymes mRNA. J. Kor. Soc. Food. Sci. Nutr. 42, 1008-1014. https://doi.org/10.3746/jkfn.2013.42.7.1008
  15. Kim, H. S., Kim, T. W., Kim, D. J., Lee, J. S. and Choe, M. 2013. Effects of medicinal herb water extracts on expression of hepatic glucokinase, pyruvate dehydrogenase and acetyl-CoA carboxylase mRNA. Kor. J. Nutr. 46, 119-125. https://doi.org/10.4163/kjn.2013.46.2.119
  16. Kim, J. W., Cha, J. Y., Heo, J. S., Jin, H. J. and Cho, Y. S. 2008. Hypoglycemic effect of chlorella sp. CMS-1 hot water extract on streptozotocin-induced diabetic rats. J. Life Sci. 18, 1584-1591. https://doi.org/10.5352/JLS.2008.18.11.1584
  17. Kim, N. M., Lee, J. S. and Lee, B. H. 1999. Effects of ${\beta}$-amylase and transglucosidase on the qualities of red ginseng extract. J. Ginseng. Res. 23, 93-98.
  18. Kim, Y. 1998. Eeffect of fructo-oligosaccharide and isomalto-oligosaccharide on quality and staling of cake. J. Kor. Soc. Food Sci. Nutr. 27, 875-880.
  19. Lee, S. E., Seong, N. S., Bang, J. K., Park, C. G., Sung, J. S. and Song, J. 2003. Antioxidative activities of Korean medicinal plants. Kor. J. Medicinal Crop Sci. 11, 127-134.
  20. Lee, S. and Chen, W. 1997. Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme Microb. Technol. 21, 436-440. https://doi.org/10.1016/S0141-0229(97)00016-1
  21. Lehmann, U. and Robin, F. 2007. Slowly digestible starch -its structure and health implications: a review. Trends. Food. Sci. Technol. 18, 346-355. https://doi.org/10.1016/j.tifs.2007.02.009
  22. Lim, S. J. and Park, H. J. 2000. The effect of BuOH fraction of polygonatum odoratum with selenium on blood glucose level and lipid peroxidation in streptozotocin induced diabetic rats. Kor. J. Nutr. 33, 703-711.
  23. Magnuson, J. K. and Lasure, L. L. 2004. Organic acid production by filamentous fungi.pp. 307-340, Advances in fungal biotechnology for industry, agriculture, and medicine, Springer.
  24. Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M. and Gokhale, D. V. 2002. Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem. 38, 715-721. https://doi.org/10.1016/S0032-9592(02)00194-2
  25. McCleary, B. V., Bouhet, F. and Driguez, H. 1991. Measurement of amyloglucosidase using p-nitrophenyl ${\beta}$-maltoside as substrate. Biotechnol. Tech. 5, 255-258. https://doi.org/10.1007/BF02438658
  26. Mendis, M., Mendoza, B. R. and Simsek, S. 2012. Covalent immobilization of transglucosidase onto polymer beads for production of isomaltooligosaccharides. Catal. Lett. 142, 1107-1113. https://doi.org/10.1007/s10562-012-0866-5
  27. O'Dea, K., Snow, P. and Nestel, P. 1981. Rate of starch hydrolysis in vitro as a predictor of metabolic responses to complex carbohydrate in vivo. Am. J. Clin. Nutr. 34, 1991-1993. https://doi.org/10.1093/ajcn/34.10.1991
  28. Okazaki, H. 1956. Joint action of a dextrinogenic amylase, a glucose-producing amylase and transglucosidase upon starch in the presence or absence of yeast. Arch. Biochem. Biophys. 63, 322-333. https://doi.org/10.1016/0003-9861(56)90047-9
  29. Ota, M., Okamoto, T. and Wakabayashi, H. 2009. Action of transglucosidase from Aspergillus niger on maltoheptaose and [$U-(13)^C$] maltose. Carbohydr. Res. 344, 460-465. https://doi.org/10.1016/j.carres.2008.12.004
  30. Pan, Y. C. and Lee, W. C. 2005. Production of high-purity isomalto-oligosaccharides syrup by the enzymatic convertsion of transglucosidase and fermentation of yeast cells. Biotechnol. Bioeng. 89, 797-804. https://doi.org/10.1002/bit.20402
  31. Park, B. S., Cho, B. K., Lee, S. W., Lim, S. W., Kim, D. I and Kim, B. G. 1999. Optimization of biotransformation process for sodium gluconate production by Aspergillus niger. Biotechnol. Bioprocess Eng. 14, 309-314.
  32. Sasaki, M., Ogasawara, N., Funaki, Y., Mizuno, M., Iida, A., Goto, C., Koikeda, S., Kasugai, K. and Joh, T. 2013. Transglucosidase improves the gut microbiota profile of type 2 diabetes mellitus patients: a randomized double-blind, placebo-controlled study. BMC Gastroenterol. 13, 81-230X-13-81. https://doi.org/10.1186/1471-230X-13-81
  33. Takizawa, F. F., Silva, G. O., Konkel, F. E. and Demiate, I. M. 2004. Characterization of tropical starches modified with potassium permanganate and lactic acid. Braz. Arch. Biol. Technol. 47, 921-931. https://doi.org/10.1590/S1516-89132004000600012
  34. Zhang, L., Jiang, Y., Jiang, Z., Sun, X., Shi, J., Cheng, W. and Sun, Q. 2009. Immobilized transglucosidase in biomimetic polymer-inorganic hybrid capsules for efficient conversion of maltose to isomaltooligosaccharides. Biochem. Eng. J. 46, 186-192. https://doi.org/10.1016/j.bej.2009.05.008