DOI QR코드

DOI QR Code

빨강불가사리(Certonardoa semiregularis)에서 분리된 세균의 군집구조 분석

Microbial Community Analysis Isolated from Red Starfish (Certonardoa semiregularis) Gut

  • 이해리 (제주대학교 해양생명과학과) ;
  • 박소현 (제주대학교 해양생명과학과) ;
  • 김동휘 (제주대학교 해양생명과학과) ;
  • 문경미 (제주대학교 해양생명과학과) ;
  • 허문수 (제주대학교 해양생명과학과)
  • Lee, Hae-Ri (Department of Marine Life Sciences, Jeju National University) ;
  • Park, So-Hyun (Department of Marine Life Sciences, Jeju National University) ;
  • Kim, Dong-Hwi (Department of Marine Life Sciences, Jeju National University) ;
  • Moon, Kyung-Mi (Department of Marine Life Sciences, Jeju National University) ;
  • Heo, Moon-Soo (Department of Marine Life Sciences, Jeju National University)
  • 투고 : 2018.04.13
  • 심사 : 2018.04.27
  • 발행 : 2018.08.30

초록

불가사리를 이용하여 다양한 생리활성에 대한 연구가 많이 진행되었지만, 다른 천연물 연구에 비해 불가사리로 부터 분리한 미생물에 대한 연구는 부족하다. 이에 본 연구에서는 제주도에서 채집한 극피동물인 빨강불가사리(Certonardoa semiregularis)의 내장으로부터 Marine Agar와 R2A를 이용하여 총 103개의 균주를 분리하여 세균군집에 대해 조사하였다. 분리된 균주들은 16S rRNA유전자를 이용하여 염기서열을 분석 및 동정하였다. 그 결과 주요 계통군은 Proteobacteria (Alpha-proteobacteria 24%, Beta-proteobacteria 4%, Gamma-proteobacteria 65%) 93%, Bacteroidetes 4%, Actinobacteria 2%, Firmicutes 1%로 4개의 문이 확인되었고, 7개의 강(Actinobacteria, Flavobacteria, Bacilli, Sphingobacteria, Alpha-proteobacteria, Beta-proteobacteria, Gamma-proteobacteria), 15개의 목, 19개의 과, 24속이 관찰되었다. 또한 계통 분석 결과 2개의 균주(Lysobacter sp., Pedobacter sp.)가 각각 97.55%, 97.58%로 상동성이 98% 이하로 나타나 새로운 속 또는 종으로 분류될 가능성이 있다고 여겨지며, 표준 균주와 함께 신종 후보 균주에 대한 생화학적, 형태학적 등의 추가적인 신종실험을 향후 진행해야 할 것으로 사료 된다.

Although much research has focused on various bioactive substances in starfish, research on microorganisms isolated from starfish is lacking as compared with other natural products. In this study, we investigated bacterial communities in the gut of red starfish (Certonardoa semiregularis) in Jeju Island. In total, 103 bacterial strains were isolated using marine agar and R2A medium. The isolated strains were analyzed and identified using the 16S rRNA gene sequence. Based on an analysis of this gene sequence, the 103 isolated bacteria were classified into four major groups: Proteobacteria (93%: Alpha-proteobacteria, 24.8%; Beta-proteobacteria, 4%; Gammaproteobacteria, 65%) Bacteroidetes (4%), Actinobacteria (2%), and Firmicutes (1%). In addition, the isolates were divided into seven classes (Actinobacteria, Flavobacteria, Bacilli, Sphingobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria), 15 orders, 19 families, and 24 genera. A phylogenetic analysis revealed two strains, Lysobacter sp. and Pedobacter sp., with similarity of 97.55% and 97.58%, respectively. As the similarity in the 16S rRNA gene sequence was 98% or less compared to previously identified bacteria, the two strains may possibly be classified as a new genus or species. We suggest that additional studies, including biochemical and morphological tests, should be performed to identify the new candidate strains.

키워드

참고문헌

  1. Alfreider, A., Pernthaler, J., Amann, R., Sattler, B., Glockner, F., Wille, A. and Psenner, R. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62, 2138-2144.
  2. Anand, T. P., Bhat, A. W., Shouche, Y. S., Roy, U., Siddharth, J. and Sarma, S. P. 2006. Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol. Res. 161, 252-262. https://doi.org/10.1016/j.micres.2005.09.002
  3. Ananthi, S., Raghavendran, H. R. B., Sunil, A. G., Gayathri, V., Ramakrishnan, G. and Vasanthi, H. R. 2010. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornate (Marine Brown Alga). Food. Chem. Toxicol. 48, 187-192. https://doi.org/10.1016/j.fct.2009.09.036
  4. Andersson, L., Nasir, A., Bohlin, L. and Kenne, L. 1987. Studies of Swedish Marine Organisms, IX. Polyhydroxylated steroidal glycosides from the starfish Porania pulvillus. J. Nat. Prod. 50, 944-947. https://doi.org/10.1021/np50053a032
  5. Aneiros, A. and Garateix, A. 2004. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J. Chromatogr. B. 803, 41-53. https://doi.org/10.1016/j.jchromb.2003.11.005
  6. Bernan, V. S., Greenstein, M. and Carter, G. T. 2004. Mining marine microorganisms as a source of new antimicrobials and antifungals. Curr. Med. Chem. Anti-Infective Agents. 3, 181-195. https://doi.org/10.2174/1568012043353883
  7. Bonner, D. P., O'Sullivan, J., Tanaka, S. K., Clark, J. M. and Whitney, R. R. 1988. Lysobactin, A novel antibacterial agent produced by Lysobacter sp.. J. Antibiot. 41, 1745-1751. https://doi.org/10.7164/antibiotics.41.1745
  8. Chae, S. Y., Kim, M. J., Kim, D. S., Park, J. E., Jo, S. K. and Yee, S. T. 2007. Effect of Asterina pectimifera extraction on the activation of immune cells. J. Kor. Soc. Food. Sci. Nutr. 36, 269-275. https://doi.org/10.3746/jkfn.2007.36.3.269
  9. Cho, H. H. and Park, J. S. 2009. Comparative analysis of the community of culturable bacteria associated with sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RELP. 2009. Kor. J. Microbiol. 45, 155-162.
  10. Choi, G. G., Lee, O. H. and Lee, G. H. 2003. The diversity of Heterotrophic bacteria isolated from intestine of starfish (Asterias amurensis) by analysis of 16S rDNA sequence. J. Ecol. Environ. 26, 307-312.
  11. Choi, H. J., Kim, Y. E., Bang, J. H., Kim, D. W., Ahn, C. S., Jeong, Y. K. and Joo, W. H. 2011. Characterization of an indigenous antimicrobial substance-producing Paenibacillus sp. BCNU 5011. Kor. J. Microbiol. Biotechnol. 26, 100-106.
  12. Choi, H. R., Park, S. H., Kim, D. H., Kim, J. Y. and Heo, M. S. 2016. Phyolgenetic diversity and community analysis of marine bacteria associated with Ulva pertusa. J. Life Sci. 26, 819-825. https://doi.org/10.5352/JLS.2016.26.7.819
  13. Du, L., Li, Z. J., Xue, J., Wang, J. F., Xue, Y., Xue, C. H., Takahashi, K. and Wang, Y. M. 2012. The anti-tumor activities of cerebrosides derived from sea cucumber Acaudina molpadioides and starfish Asterias amurensis in vitro and in vivo. J. Oleo. Sci. 61, 321-330. https://doi.org/10.5650/jos.61.321
  14. Eilers, H., Pernthaler, J., Glockner, F. O. and Amann, R. 2000. Culturability and in situ abundance of pelagic bacteria from the North sea. Appl. Envion. Microbiol. 66, 3044-3051. https://doi.org/10.1128/AEM.66.7.3044-3051.2000
  15. El Amraoui, B., El Amraoui, M., Cohen, N. and Fassouane, A. 2014. Antifungal and antibacterial activity of marine microorganisms. Ann. Pharm. Fr. 72, 107-111. https://doi.org/10.1016/j.pharma.2013.12.001
  16. Habbu, P., Warad, V., Shastri, R., Madagundi, S. and Kulkarni, V. H. 2016. Antimicrobial metabolites from marine microorganisms. Chin. J. Nat. Med. 14, 0101-0116.
  17. Islam, T. M., Hashidoko, Y., Deora, A., Ito, T. and Tahara, S. 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. Strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl. Eviron. Microbiol. 71, 3876-3796.
  18. Isnansetyo, A. and Kamei, Y. 2003. Pseudoalteromonas phenolica sp. Nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. Int. J. Syst. Evol. Microbiol. 53, 583-588. https://doi.org/10.1099/ijs.0.02431-0
  19. Kamei, Y., Yoshimizu, M., Ezura, Y. and Kimura, T. 1987. Screening of bacteria with antiviral activity against infectious Hematopoietic Necrosis Virus (IHNV) from estuarine and marine environments. Bull. Jpn. Soc. Sci. Fish. 53, 2179-2185. https://doi.org/10.2331/suisan.53.2179
  20. Kato, A., Nakaya, S., Ohashi, Y., Hirata, H., Fujii, K. and Harada, K. I. 1997. WAP-$8294A_2$, A novel anti-MRSA antibiotic produced by Lysobacter sp.. J. Am. Chem. Soc. 119, 6680-6681. https://doi.org/10.1021/ja970895o
  21. Kim, D. H., Park, S. H., Kim, J. H., Lee, H. R. and Heo, M. S. 2017. Screening of antimicrobial activity of marine-derived biomaterials aginst fish pathogens. Microbiol. Biotechnol. Lett. 45, 250-256.
  22. Levina, E. V., Kalinovsky, A. I., Andriyashenko, P. V., Dmitrenok, P. S., Aminin, D. L. and Stonik, V. A. 2005. Phrygiasterol, a cytotoxic cyclopropane-containing Polyhydroxysteroid, and related compounds from the pacific starfish Hippasteria phrygiana. J. Nat. Prod. 68, 1541-1544. https://doi.org/10.1021/np049610t
  23. Li, Z., He, L. and Miao, X. 2007. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 465-472. https://doi.org/10.1007/s00284-007-9035-2
  24. Muscholl-Silberhorn, A., Thiel, V. and Imhoff, J. F. 2008. Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microbiol. Ecol. 55, 94-106. https://doi.org/10.1007/s00248-007-9255-9
  25. Okami, Y., Okazaki, T., Kitahara, T. and Umezawa, H. 1976. Studies on marine microorganisms. V: A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud. J. Antibiot. 29, 1019-1025. https://doi.org/10.7164/antibiotics.29.1019
  26. Okami, Y. 1986. Marine microorganisms as a source of bioactive agents. Microbial. Ecol. 12, 65-78. https://doi.org/10.1007/BF02153223
  27. Okutani, K. 1992. Antiviral activities of sulfated derivates of a fucosamine containing polysaccharide of marine bacterial origin. Nippon Suisan Gakk. 58, 927-930. https://doi.org/10.2331/suisan.58.927
  28. Park, E. H., Kim, J. A., Choi, S. H., Bin, J. H., Cheigh, H. S., Suk, D. H., Lee, S. C. and Kim, Y. H. 2007. Isolation and antimicrobial susceptibility of Campylobacter jejuni from diarrhea patients. J. Life Sci. 17, 811-815. https://doi.org/10.5352/JLS.2007.17.6.811
  29. Park, S. H., Kim, J. Y., Kim, Y. J. and Heo, M. S. 2015. Flavobacterium jejuensis sp. Nov., isolated from marine brown alga Ecklonia cava. J. Microbiol. 53, 756-761. https://doi.org/10.1007/s12275-015-5280-4
  30. Ryazanova, L. P., Stepnaya, O. A., Suzina, N. E. and Kulaev, I. S. 2005. Antifungal action of the lytic enzyme complex from Lysobacter sp. XL1. Process. Biochem. 40, 557-564. https://doi.org/10.1016/j.procbio.2004.01.031
  31. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  32. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  33. Tang, H. F., Cheng, G., Wu, J., Chen, X. L., Zhang, S. Y., Wen, A. D. and Lin, H. W. 2009. Cytotoxic Asterosaponins capable of promoting polymerization of tubulin from the starfish Culcita novaeguineae. J. Nat. Prod. 72, 284-289. https://doi.org/10.1021/np8004858
  34. Tang, H. F., Yi, Y. H., Li, L., Sun, P., Zhang, S. Q. and Zhao, Y. P. 2005. Three new Asterosaponins from the starfish Culcita novaeguineae and their bioactivity. Planta. Med. 71, 458-463. https://doi.org/10.1055/s-2005-871215
  35. Thao, N. P., Cuong, N. X., Luyen, B. T. T., Quang, T. H., Hanh, T. T. H., Kim, S. H., Koh, Y. S., Nam, N. H., Kiem, P. V., Minh, C. V. and Kim, Y. H. 2013. Anti-inflammatory components of the starfish Astropecten polyacanthus. Mar. Drugs 11, 2917-2926. https://doi.org/10.3390/md11082917
  36. Thao, N. P., Cuong, N. X., Luyen, B. T. T., Thanh, N. V., Nhiem, N. X., Koh, Y. S., Ly, B. M., Nam, N. H., Kiem, P. V., Minh, C. V. and Kim, Y. H. 2013. Anti-inflammatory Asterosaponins from the starfish Astropecten monacanthus. J. Nat. Prod. 76, 1764-1770. https://doi.org/10.1021/np400492a
  37. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gan penalties and weight matrix choice. Nucleic. Acids. Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  38. Wu, F. J., Xue, Y., Tang, Q. J., Xu, J., Du, L., Xue, C. H., Takahashi, K. and Wang, Y. M. 2013. The protective effects of Cerebrosides from sea cucumber and starfish on the oxidative damage in PC12 cells. J. Oleo. Sci. 62, 717-727. https://doi.org/10.5650/jos.62.717
  39. Yun, H., Oh, H. J. and Choi, S. W. 2012. Difference of Catechins extracted level when fermented sun-dried salt and green tea. Kor. J. Contents. 12, 278-285. https://doi.org/10.5392/JKCA.2012.12.11.278
  40. Zhang, W., Wang, J., Jin, W. and Zhang, Q. 2013. The antioxidant activities and neuroprotectice effect of polysaccharides from the starfish Asterias rollestoni. Carbohyd. Polym. 95, 9-15. https://doi.org/10.1016/j.carbpol.2013.02.035