DOI QR코드

DOI QR Code

현미 주정 추출물의 항산화 활성 및 melanin 합성 촉진 효과

Ethanolic Extract of Oryza sativa Displays Antioxidative Activity and Promotes Melanin Synthesis

  • 투고 : 2018.03.09
  • 심사 : 2018.05.04
  • 발행 : 2018.08.30

초록

모발의 검정색은 노화됨에 따라 백색으로 변화된다. 이러한 현상은 모낭내 tyrosinase 활성의 감소와 $H_2O_2$에 의한 축적에 의하여 기인된다. 따라서 본 연구의 목적은 현미주정추출물(OREE)를 이용하여 백발화의 원인인 과산화 수소에 대한 항산화 활성과 멜라닌 생성 촉진 효과를 조사한 것이다. 본 연구에서 OREE은 낮은 DPPH radical 소거능과 환원력을 보여주었다. 그러나 B16F1 세포내에서 $H_2O_2$ 소거에 대해서는 높은 항산화효과를 나타내었다. 그리고 OREE는 in vitro에서 DOPA 산화 활성은 나타나지 않았지만 $64{\mu}g/ml$에서 tyrosinase 활성을 증가시켰다. MTT assay에서 OREE는 $32{\mu}g/ml$ 이상의 농도에서 세포독성을 나타내었다. 또한 OREE는 $8{\mu}g/ml$ 이상의 농도에서 멜라닌 합성은 농도에 비례하여 증가하였고, $H_2O_2$로 멜라닌 생성을 저하시킨 세포에서도 멜라닌 합성을 증가시켰다. 멜라닌 합성에 대한 OREE의 효과를 확인하기 위하여 Western blot 분석이 수행되었다. $H_2O_2$로 멜라닌 생성을 저하시킨 세포에서 멜라닌 합성 기전 관여하는 tyrosine hydroxylase와 tyrosinase-related protein-2 (TRP-2) 발현은 OREE의 존재 하에서 증가하였다. 이상의 발견들은 OREE가 멜라닌 합성을 촉진시킬 수 있어 이와 관련된 모발화장품의 개발에 적용시킬 수 있다는 것을 시사하고 있다.

Hair loses melanin with aging, which leads to hair graying. The change in hair color is caused by a reduction in tyrosinase activity and an accumulation of hydrogen peroxide ($H_2O_2$) in hair follicles. The purpose of this study was to investigate the effect of ethanolic extract of Oryza sativa (OREE) on melanin production and antioxidative activity in B16F1 cells. In this study, OREE showed low DPPH radical scavenging activity and reducing power. However, it displayed a strong antioxidative effect against intracellular $H_2O_2$ in live cells. OREE did not inhibit DOPA oxidation activity in vitro, but it increased tyrosinase activity at a concentration of $64{\mu}g/ml$. OREE at a concentration higher than $32{\mu}g/ml$ showed cell toxicity in B16F1 cells. However, OREE at a concentration higher than $8{\mu}g/ml$ not only increased melanin synthesis in a dose-dependent manner in B16F1 cells but also increased melanin synthesis in cells treated with $H_2O_2$ inhibiting melanin synthesis. To confirm the effect of OREE on melanin production, Western blot analysis was performed. The results revealed that OREE increased the expression levels of tyrosine hydroxylase and tyrosinase-related protein-2 (TRP-2) involved in melanin production in the $H_2O_2$-treated cells in which melanin production was inhibited. The findings suggest that OREE could improve melanin synthesis and be available for development of hair cosmetics aimed at improving melanin production.

키워드

참고문헌

  1. Bae, J. S., Han, M., Yao, C. and Chung, J. H. 2016. Chaetocin inhibits IBMX-induced melanogenesis in B16F10 mouse melanoma cells through activation of ERK. Chem. Biol. Interact. 245, 66-71. https://doi.org/10.1016/j.cbi.2015.12.021
  2. Etienne, G., Cony-Makhoul, P. and Mahon, F. X. 2002. Imatinib mesylate and gray hair. N. Engl. J. Med. 347, 446-446.
  3. Fukunaga, S., Wada, S., Aoi, W., Osada Oka, M., Minamiyama, Y., Ichikawa, H. and Higashi, A. 2018. Effect of melanogenesis inhibition by a yeast extract in comparison to that by other food extracts, and its mechanism of action. J. Food Biochem. 42, 12520-12524. https://doi.org/10.1111/jfbc.12520
  4. Gong, E. S., Luo, S. J., Li, T., Liu, C. M., Zhang, G. W., Chen, J., Zeng, Z. C. and Liu, R. H. 2017. Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chem. 227, 432-443. https://doi.org/10.1016/j.foodchem.2017.01.093
  5. Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H. and Itakura, Y. 1994. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 60, 417-420. https://doi.org/10.1055/s-2006-959522
  6. Kong, E. L., Lee, B. K., Ginjom, I. and Nissom, P. M. 2015. DNA damage inhibitory effect and phytochemicals of fermented red brown rice extract. Asian Pac. J. Trop. Dis. 5, 732-736. https://doi.org/10.1016/S2222-1808(15)60922-7
  7. Lee, E., Kim, H., Yu, J. M., Cho, Y. H., Kim, D. I., Shin, Y., Cho, Y., Kwon, O. J. and An, B. 2014. Anti-inflammatory effect of Polygonum multiflorum extraction in activated RAW 264.7 cells with lipopolysaccharide. Kor. J. Food Preserv. 21, 740-746. https://doi.org/10.11002/kjfp.2014.21.5.740
  8. Li, Z., Lee, J. and Cho, M. H. 2010. Antioxidant, antibacterial, tyrosinase inhibitory, and biofilm inhibitory activities of fermented rice bran broth with effective microorganisms. Biotechnol. Bioprocess Eng. 15, 139-144. https://doi.org/10.1007/s12257-009-0142-8
  9. Nakayama, T., Nagai, Y., Uehara, Y., Nakamura, Y., Ishii, S., Kato, H. and Tanaka, Y. 2017. Eating glutinous brown rice twice a day for 8 weeks improves glycemic control in Japanese patients with diabetes mellitus. Nutr. Diabetes 7, e273. https://doi.org/10.1038/nutd.2017.26
  10. Oh, T. I., Yun, J. M., Park, E. J., Kim, Y. S., Lee, Y. M. and Lim, J. H. 2017. Plumbagin suppresses ${\alpha}$-MSH-induced melanogenesis in B16F10 mouse melanoma cells by inhibiting tyrosinase activity. Int. J. Mol. Sci. 18, 320. https://doi.org/10.3390/ijms18020320
  11. Okazaki, K., Uzuka, M., Morikawa, F., Toda, K. and Seiji, M. 1976. Transfer mechanism of melanosomes in epidermal cell culture. J. Invest. Dermatol. 67, 541-547. https://doi.org/10.1111/1523-1747.ep12664554
  12. Oyaizu, M. 1986. Studies on products of browning reaction. Jpn. J. Nutr. Diet. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  13. Praengam, K., Sahasakul, Y., Kupradinun, P., Sakarin, S., Sanitchua, W., Rungsipipat, A., Rattanapinyopituk, K., Angkasekwinai, P., Changsri, K. and Mhuantong, W. 2017. Brown rice and retrograded brown rice alleviate inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice. Food Funct. 8, 4630-4643. https://doi.org/10.1039/C7FO00305F
  14. Randhawa, M. A. and Aljabr, A. S. 2016. A Review of Imatinib Induced Pigmentary Changes in the Skin and Mucous Membranes. J. N. Basic Appl. Sci. Volume 1, DOI: 10.12816/0031346.
  15. San Jose, L. M., Ducrest, A. L., Ducret, V., Simon, C., Richter, H., Wakamatsu, K. and Roulin, A. 2017. MC1R variants affect the expression of melanocortin and melanogenic genes and the association between melanocortin genes and coloration. Mol. Ecol. 26, 259-276. https://doi.org/10.1111/mec.13861
  16. Schallreuter, K. U., Rubsam, K., Gibbons, N. C., Maitland, D. J., Chavan, B., Zothner, C., Rokos, H. and Wood, J. M. 2008. Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide ($H_2O_2$) in the epidermis of patients with vitiligo. J. Invest. Dermatol. 128, 808-815. https://doi.org/10.1038/sj.jid.5701100
  17. Sies, H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613-619. https://doi.org/10.1016/j.redox.2016.12.035
  18. Slominski, A., Wortsman, J., Plonka, P. M., Schallreuter, K. U., Paus, R. and Tobin, D. J. 2005. Hair follicle pigmentation. J. Invest. Dermatol. 124, 13-21. https://doi.org/10.1111/j.0022-202X.2004.23528.x
  19. Stone, J. R. and Yang, S. 2006. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8, 243-270. https://doi.org/10.1089/ars.2006.8.243
  20. Van Den Bossche, K., Naeyaert, J. M. and Lambert, J. 2006. The quest for the mechanism of melanin transfer. Traffic 7, 769-778. https://doi.org/10.1111/j.1600-0854.2006.00425.x
  21. Waster, P., Eriksson, I., Vainikka, L., Rosdahl, I. and Ollinger, K. 2016. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation. Sci. Rep. 6, 27890. https://doi.org/10.1038/srep27890
  22. Waterman, P. G. and Mole, S. 1994 Analysis of phenolic plant metabolites: Blackwell Scientific.
  23. Wood, J. M., Decker, H., Hartmann, H., Chavan, B., Rokos, H., Spencer, J., Hasse, S., Thornton, M. J., Shalbaf, M. and Paus, R. 2009. Senile hair graying: $H_2O_2$-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 23, 2065-2075. https://doi.org/10.1096/fj.08-125435
  24. Yoshida, I., Ito, C., Matsuda, S., Tsuji, A., Yanaka, N. and Yuasa, K. 2017. Alisol B, a triterpene from Alismatis rhizoma (dried rhizome of Alisma orientale), inhibits melanin production in murine B16 melanoma cells. Biosci. Biotechnol. Biochem. 81, 534-540. https://doi.org/10.1080/09168451.2016.1268042
  25. Zhou, J., Ren, T., Li, Y., Cheng, A., Xie, W., Xu, L., Peng, L., Lin, J., Lian, L. and Diao, Y. 2017. Oleoylethanolamide inhibits ${\alpha}$-melanocyte stimulating hormone-stimulated melanogenesis via ERK, Akt and CREB signaling pathways in B16 melanoma cells. Oncotarget 8, 56868.