DOI QR코드

DOI QR Code

원격 수질 측정을 위한 현장 초분광 복사계 및 수중 구성성분 관측 자료 분석

Analysis of Hyperspectral Radiometer and Water Constituents Data for Remote Estimation of Water Quality

  • Kim, Wonkook (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Choi, Jun Myoung (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
  • 투고 : 2018.08.03
  • 심사 : 2018.08.10
  • 발행 : 2018.08.31

초록

복사계 장비를 이용하여 수질을 원격으로 추정하는 기술은 광역 수권환경의 변화를 모니터링함에 있어서 효과적인 수단을 제공한다. 위성 또는 유무인 항공기 등의 플랫폼과 결합되어 사용될 시, 광역 수질정보 획득에 소요되는 비용 및 시간을 절감할 수 있다. 정확한 원격 추정 알고리즘을 개발하기 위해서는 다양한 광학적 환경에서 획득된 현장 관측 자료의 확보가 매우 중요하다. 본 연구에서는 조사지역의 광학적 환경을 분석하기 위하여, 초분광 복사량 및 수중 구성물질에, 그리고 그 구성물질의 광학적 특성에 대한 자료가 획득되었다. 조사해역으로 설정된 통영 인근 해역에 대한 관측자료를 분석한 결과, 조사해역은 광학적으로 복잡한 해역임이 나타났고, 일부 정점에서 적조생물을 포함한 수괴가 발견되었다. 또한, 각 수중 구성성분이 원격탐사 반사도 및 흡광계수에 미치는 영향에 대한 정성적인 분석결과를 제공한다.

Remote estimation of water quality via radiometric instruments provides a convenient means for monitoring environmental changes in water bodies in wide areas. Combined with platforms such as satellite, manned/unmanned vehicles, it reduces the measurement cost and time for acquiring water quality information on the interested target areas. To develop accurate retrieval algorithms, however, acquisition of in-situ measurements from various optical environment is critical. In this study, hyperspectral radiometric measurements, the coincident water quality variables, and its optical properties were obtained to analyze the optical environment of the study area. Field data collected around the Tongyeong area showed that the area has optically complex environment, with occasional outbreak of red tide in summer seasons. Effect of water constituents on the optical variables (remote sensing reflectance and absorption coefficients) were qualitatively analyzed.

키워드

참고문헌

  1. Gower, J.F.R., Brown, L., and Borstad, G.A. (2004), Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor, Canadian Journal of Remote Sensing, Vol. 30, No. 1, pp. 17-25. https://doi.org/10.5589/m03-048
  2. Gower, J.F.R., Doerffer, R., and Borstad, G.A. (1999), Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS, International Journal of Remote Sensing, Vol. 20, No. 9, pp. 1771-1786. https://doi.org/10.1080/014311699212470
  3. Jeffrey, S.W. and Humphrey, G.F. (1975), New spectrophotometric equation for determining chlorophyll a, b, c1 and c2, Biochemie und physiologie der pflanzen, Vol. 167, No. 2, pp. 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3
  4. Kim, H. (2014), Utilization Plan of Drones for the Field of Ocean and Fishery, Issue Analysis Report No. 2014-06, Korea Maritime Institute (KMI), Busan, pp. 5-36.
  5. Kim, W., Moon, J.E., Park, Y.J., and Ishizaka, J. (2016), Evaluation of chlorophyll retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian region, Remote Sensing of Environment, Vol. 184, pp. 482-495. https://doi.org/10.1016/j.rse.2016.07.031
  6. Kishino, M., Takahashi, M., Okami, N., and Ichimura, S. (1985), Estimation of the spectral absorption-coeffients of phytoplankton in the sea, Bulletin of Marine Science, Vol. 37, No. 2, pp. 634-642.
  7. Le, C.F., Hu, C.M, Cannizzaro, J., English, D., Muller-Karger, F., and Lee, Z. (2013), Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary, Remote Sensing of Environment, Vol. 129, pp. 75-89. https://doi.org/10.1016/j.rse.2012.11.001
  8. Lee, Y.S. (2006), Factors affecting outbreaks of high-density Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea, Marine Pollution Bulletin, Vol. 52, No. 10, pp. 1249-1259. https://doi.org/10.1016/j.marpolbul.2006.02.024
  9. Lee, Z., Ahn, Y.H., Mobley, C., and Arnone, R. (2010), Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform, Optics Express, Vol. 18, No. 25, pp. 26313-26324. https://doi.org/10.1364/OE.18.026313
  10. Lee, Z., Carder, K.L., Mobley, C.D., Steward, R.G., and Patch, J.S. (1999), Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization, Applied Optics, Vol. 38, No. 18, pp. 3831-3843. https://doi.org/10.1364/AO.38.003831
  11. Moon, J.E., Park, Y.J., Ryu, J.H., Choi, J.K., and Ahn, J.H. (2012), Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010-2011, Ocean Science Journal, Vol. 47, No. 3, pp. 261-277. https://doi.org/10.1007/s12601-012-0027-1
  12. O'Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M., and McClain, C. (1998), Ocean color chlorophyll algorithms for SeaWiFS, Journal of Geophysical Research-Oceans, Vol. 103, No. C11, pp. 24937-24953. https://doi.org/10.1029/98JC02160
  13. Park, T.G., Lim, W.A., Park, Y.T., Lee, C.K., and Jeong, H.J. (2013), Economic impact, management and mitigation of red tides in Korea, Harmful Algae, Vol. 30, pp. S131-S143. https://doi.org/10.1016/j.hal.2013.10.012
  14. Shang, S., Lee, Z., Lin, G., Hu, C., Shi, L., Zhang, Y., Li, X., Wu, J., and Yan, J. (2017), Sensing an intense phytoplankton bloom in the western Taiwan Strait from radiometric measurements on a UAV, Remote Sensing of Environment, Vol. 198, pp. 85-94. https://doi.org/10.1016/j.rse.2017.05.036
  15. Son, H. (2018), Korean coast guard monitors red tide using drones equipped with a high-performance camera, Yonhap News, Incheon, http://www.yonhapnews.co.kr/bulletin/2018/08/07/0200000000AKR20180807092400065.HTML (last date accessed: 9 August 2018).