DOI QR코드

DOI QR Code

2D Numerical Simulation of a Dynamic Centrifuge Test for a Pile-Supported Structure

2차원 수치해석을 이용한 말뚝 지지구조물의 동적 원심모형실험 거동 모사

  • ;
  • ;
  • 김성렬 (서울대학교 건설환경공학부)
  • Received : 2018.04.06
  • Accepted : 2018.06.29
  • Published : 2018.08.31

Abstract

Recently, as the seismic performance based design methods have been introduced, dynamic numerical analyses need to be performed to evaluate the actual performance of structures under earthquakes. The verification of the numerical modeling is the most important for the performance based design. Therefore, 2-dimensional numerical analyses were performed to simulate the seismic behavior of a pile-supported structure, to provide the proper numerical modeling and to determine of input parameters. A dynamic centrifuge test of a pile group in dry loose sand was simulated to verify the applicability of the numerical model. The numerical modeling was carefully made to reflect the actual condition of the centrifuge test including dynamic soil properties, soil-pile interaction, boundary condition, the modeling of the group pile and structure and so on. The predicted behavior of the numerical analyses successfully simulated the acceleration variation in ground, the moment and displacement of the pile, and the displacement and acceleration of the structure. Therefore, the adopted numerical modeling and the input parameters can be used to evaluate the seismic performance of pile groups.

최근, 성능기반 내진설계법이 도입되면서 동적수치해석을 수행하여 지진에 대한 구조물의 실제 거동을 엄밀히 평가하는 것이 필요해지고 있다. 성능기반설계를 수행하려면 수치해석 모델링의 적용성을 검증하는 것이 매우 중요하다. 그러므로, 본 연구에서는 2차원 수치해석을 수행하여 말뚝지지 구조물의 동적 거동을 분석하고 수치모델링 기법과 입력변수값 산정방법을 제안하였다. 수치모델링의 적용성은 느슨한 사질토 지반에 설치된 무리말뚝의 동적 원심모형실험 결과와 비교하여 검증하였다. 본 수치모델링은 동적 지반 물성값, 지반-말뚝 상호작용, 경계조건, 무리말뚝과 구조물의 모델링 등 원심모형실험의 실제 조건을 반영하도록 모델링하였다. 그 결과, 수치해석에서 얻어진 결과는 지반 내 가속도 변화, 말뚝의 모멘트와 변위, 그리고 구조물의 변위와 가속도 결과를 잘 모사하였다. 그러므로, 본 수치모델링 기법과 입력변수 산정기법이 무리말뚝의 내진성능을 평가할 때 유용하게 적용될 수 있을 것으로 판단된다.

Keywords

References

  1. Brennan, A. J., Thusyanthan, N. I., and Madabhushi, S. P. G. (2005), "Evaluation of Shear Modulus and Damping in Dynamic Centrifuge Test", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.12, pp.1488-1497. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1488)
  2. Cha, M. S. and Cho, G. C. (2007), "Shear Strength Estimation of Sandy Soils Using Shear Wave Velocity", Geotechnical Testing Journal, Vol.30, No.6, pp.484-495.
  3. Chau, K. T., Shen, C. Y., and Guo, X. (2009), "Nonlinear Seismic Soil-pile-structure Interactions: Shaking Table Tests and FEM Analyses", Soil Dynamics and Earthquake Engineering, Vol.29, pp.300-310. https://doi.org/10.1016/j.soildyn.2008.02.004
  4. Chatterjee, K. and Choudhury, D. (2017), "Influence of Damping Models on Dynamic Response of Pile Group", Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, pp.1493-1496.
  5. Cho, H. I., Park, H. J., Kim, D. S., and Choo, Y. W. (2014), "Evaluation of Ko in Centrifuge Model using Shear Wave Velocity", Geotechnical Testing Journal, Vol.37, No.2, pp.255-267. https://doi.org/10.1520/GTJ20130060
  6. Donovan, K., Pariseau, W. G., and Cepak, M. (1984), "Finite Element Approach to Cable Bolting in Steeply Dipping VCR Stopes", Geomechanics Application in Underground Hardrock Mining, Society of Mining Engineers, New York, pp.65-90.
  7. Ettouney, M. M., Brennan, J. A., and Forte, M. F. (1983), "Dynamic Behavior of Pile Groups", Journal of Geotechnical and Geoenvironment Engineering, Vol.109, No.3, pp.301-317. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(301)
  8. Green, R. A., Olgun, C. G., and Cameron, W. I. (2008), "Response and Modeling of Cantilever Retaining Walls Subjected to Seismic Motions", Computer-Aided Civil and Infrastructure Engineering, Vol.23, pp.309-322. https://doi.org/10.1111/j.1467-8667.2007.00538.x
  9. Itasca, FLAC2D Version 8.0 (2016), Fast Lagrangian Analysis of Continua. User's Manual. Sixth Edition, Itasca Consulting Group, Inc., Minneapolis, Minnesota, USA.
  10. Kaynia, A. M. and Kausel, E. (1982), Dynamic Behavior of Pile Groups.
  11. Kim, D. S., Lee, S. H., Choo, Y. W., and Perdriat, J. (2013), "Self-balanced Earthquake Simulator on Centrifuge and Dynamic Performance Verification", KSCE Journal of Civil Engineering, Vol.17, No.4, pp.651-661. https://doi.org/10.1007/s12205-013-1591-3
  12. Kramer, S. L. (1996), "Geotechnical Earthquake Engineering", University of Washington.
  13. Kuhlemeyer, R. L. and Lysmer, J. (1973), "Finite Element Method Accuracy for Wave Propagation Problems", Journal of the Soil Mechanics and Foundations Division, Vol.99, No.5, pp.421-427.
  14. Lee, J. S., Chae, H. G., Kim, D.S., Jo, S. B., and Park, H. J. (2015), "Numerical Analysis of Inverted T-type Wall under Seismic Loading", Computers and Geotechnics, Vol.66, pp.85-95. https://doi.org/10.1016/j.compgeo.2015.01.013
  15. Lee, S. H., Choo, Y. W., and Kim, D. S. (2012), "Performance of an Equivalent Shear Beam (ESB) Model Container for Dynamic Geotechnical Centrifuge Tests", Soil Dynamics and Earthquake Engineering, Vol.44, pp.102-114.
  16. Lu, J. (2006), "Parallel Finite Element Modeling of Earthquake Site Response and Liquefaction," Ph.D. Dissertation, University of California, San Diego, USA.
  17. Lu, J., Elgamal, A., Yan, L., Law, K.H., and Conte, J.P. (2011), "Large-Scale Numerical Modeling in Geotechnical Earthquake Engineering", International Journal of Geomechanics, ASCE, 11(6): 490-503. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000042
  18. Luo, C., Yang, X., Zhan, C., Jin, X., and Ding, Z. (2016), "Nonlinear 3D Finite Element Analysis of Soil-pile-structure Interaction System Subjected to Horizontal Earthquake Excitation", Soil Dynamics and Earthquake Engineering, Vol.84, pp.145-156. https://doi.org/10.1016/j.soildyn.2016.02.005
  19. Madabhushi, G. (2014), Centrifuge Modelling for Civil Engineering.
  20. McCullough, N. J. (2003), "The Seismic Geotechnical Modeling, Performance, and Analysis of Pile-supported Wharves", Ph.D Dissertation, Oregon State University,
  21. Mylonakis, G. and Gazetas, G. (1999), "Lateral Bibration and Internal Forces of Group Piles in Layered Soil", Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.1, pp.16-25. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:1(16)
  22. Na, U. J., Chaudhuri, S. R., and Shinozuka, M. (2009), "Performance Evaluation of Pile-Supported Wharf under Seismic Loading", ASCE, Lifeline Earthquake Engineering in a Multihazard Environment, pp.1032-1041.
  23. OCDI (2009), "Technical Standards and Commentaries for Port and Harbor Facilities in Japan", The Overseas Coastal Area Development Institute of Japan.
  24. PIANC (2001), "Seismic Design Guidelines for Port Structures", Permanent International Navigation Association, A.A. Balkema Publishers, Rotterdam, Netherlands.
  25. Takahashi, A. and Takemura, J. (2005), "Liquefaction-induced Large Displacement of Pile-Supported Wharf", Soil Dynamics and Earthquake Engineering, Vol.25, pp.811-825. https://doi.org/10.1016/j.soildyn.2005.04.010
  26. Torkamani, H. H. Bargi, K., Amirabadi, R., and McCllough, N. J. (2014), "Fragility Estimation and Sensitivity Analysis of an Idealized Pile-Supported Wharf with Batter Piles", Soil Dynamics and Earthquake Engineering, Vol.61-62, pp.92-106. https://doi.org/10.1016/j.soildyn.2014.01.024
  27. Tran, N.X., Lee, J.S., and Kim, S.R. (2017), "Evaluation of Seismic Performance of Takahama Wharf using Nonlinear Effective Stress Analysis", Journal of the Korean Geotechnical Society, Vol.33, No.4, pp.47-56. https://doi.org/10.7843/KGS.2017.33.4.47
  28. Wood, D. M. (2004), Geotechnical Modeling.