DOI QR코드

DOI QR Code

Test Standards Analyses for Tailoring of Satellite Space Qualification

위성 우주인증 테일러링을 위한 해외 시험표준서 분석

  • Song, Sua (Dept. of Aerospace and Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Chang, Young-Keun (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 송수아 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 장영근 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2018.05.04
  • Accepted : 2018.07.31
  • Published : 2018.08.31

Abstract

The space qualification has to be conducted by a high level of screening to ensure the design margin of devices, materials, manufacturing processes, units, modules, and subsystem or system. The space qualification according to traditional test standards proposed by US military, NASA and ESA involve high cost and tight schedule due to their conservative requirements. It is necessary to develop a space qualification guideline that is cost-efficient and schedule-optimized for the development of domestic satellites. In this study, as a basic research to develop the space qualification guideline, the articles related to space qualification in test standards document released from military and space agency have been investigated. We are planning to utilize the results as a basic database for establishing the independent tailored space qualification guideline.

일반적으로 우주인증은 높은 수준의 스크리닝을 수행하여 소자, 재료 및 제작공정, 부품, 서브시스템 또는 시스템 설계에 대한 마진을 확인한다. 기존의 미국 군, 미 항공우주국(NASA) 그리고 유럽우주기구(ESA) 시험표준서의 우주인증은 보수적 요구조건에 기인해 일정과 비용 측면에서 과도한 경우가 많다. 따라서 국내위성 개발을 위해 독자적인 비용 및 일정 최적화된 우주인증지침서가 필요하다. 본 논문에서는 이러한 우주인증 가이드라인 개발을 위한 기초 연구로서 해외 군 및 우주기구 시험표준서의 우주인증 항목을 비교 분석하였다. 이를 통해 테일러링(tailoring)된 독자적 우주인증 가이드라인을 구축하기 위한 데이터베이스로 사용하고자 한다.

Keywords

References

  1. S. W. Choi, et al., "Development of Space Certification Technology for the Next Generation Communication Satellite," Technical Report, M701AA 000002, Korea Aerospace Research Institute, 2004.
  2. C. H. Lee, et al., "Development of Material and Part Qualification Process for Space System," Technical Report, Korea Aerospace Research Institute, 2017.
  3. MIL-STD-1540E/SMC-TR-06-11, "Test Requirements for Launch, Upper-Stage, and Space Vehicles," TR-2004(8583)-1 REV. A, The Aerospace Corp., 2006.
  4. SMC-S-016, "Test Requirements for Launch, Upper-Stage, and Space Vehicles," Air Force Command, Space and Missile Center Standard, Sep. 2014.
  5. MIL-HDBK-340A(USAF), "Military Hand book: Test Requirements for Launch, Upper-stage, and space vehicles(Vol.1: Baselines)," Apr. 1999.
  6. GSFC-STD-7000, "General Environmental Verification Standard (GEVS) for GSFC Flight Programs and Projects," NASA Goddard Space Flight Center, 2013.
  7. NASA-STD-7002A, "Payload Test Requirements, NASA Technical Standard," NASA, 1996.
  8. ECSS-E-ST-10-03C, "European Cooperation for Space Standardization Space Engineering Test," ESA, 2012.
  9. P. Lang, M. Card, S. Saalwaechter, T. Godkin, "Application of Test Effectiveness in Spacecraft Testing," Proceeding of Reliability and Maintainability Symposium, 1995.
  10. Mengu Cho, "Reliability Growth of Small-scale Satellites through Testing: Monte Carlo Simulation", 5th Nanosatellite symposium, Tokyo, Japan, 2013.
  11. Private Communication with Dr. Fischer(Program Manager of KOMPSAT- 6 SAR Payload System) at Airbus Defense and Space, 2018.
  12. Gail Johnson-Roth, "Mission Assurance Guidelines for A-D Mission Risk Classes," TOR-2011(8591)-21, The Aerospace Corp., 2011.