DOI QR코드

DOI QR Code

Regulation of AKT Activity by Inhibition of the Pleckstrin Homology Domain-PtdIns(3,4,5)P3 Interaction Using Flavonoids

  • Kang, Yerin (Department of Environmental Health Science, Konkuk University) ;
  • Jang, Geupil (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Ahn, Seunghyun (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Youngshim (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Shin, Soon Young (Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University) ;
  • Yoon, Youngdae (Department of Environmental Health Science, Konkuk University)
  • Received : 2018.05.02
  • Accepted : 2018.07.03
  • Published : 2018.08.28

Abstract

The serine-threonine kinase AKT plays a pivotal role in tumor progression and is frequently overactivated in cancer cells; this protein is therefore a critical therapeutic target for cancer intervention. We aimed to identify small molecule inhibitors of the pleckstrin homology (PH) domain of AKT to disrupt binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby downregulating AKT activity. Liposome pulldown assays coupled with fluorescence spectrometry were used to screen flavonoids for inhibition of the AKT PH-PIP3 interaction. Western blotting was used to determine the effects of the inhibitors on AKT activation in cancer cells, and in silico docking was used for structural analysis and optimization of inhibitor structure. Several flavonoids showing up to 50% inhibition of the AKT PH-PIP3 interaction decreased the level of AKT activation at the cellular level. In addition, the modified flavonoid showed increased inhibitory effects and the approach would be applied to develop anticancer drug candidates. In this study, we provide a rationale for targeting the lipid-binding domain of AKT, rather than the catalytic kinase domain, in anticancer drug development.

Keywords

References

  1. Stahelin RV. 2009. Lipid binding domains: more than simple lipid effectors. J. Lipid Res. 50: S299-S304. https://doi.org/10.1194/jlr.R800078-JLR200
  2. Hurley JH, Meyer T. 2001. Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13: 146-152. https://doi.org/10.1016/S0955-0674(00)00191-5
  3. Park M-J, Sheng R, Silkov A, Jung D-J, Wang Z-G, Xin Y, et al. 2016. SH2 domains serve as lipid-binding modules for pTyrsignaling proteins. Mol. Cell 62: 7-20. https://doi.org/10.1016/j.molcel.2016.01.027
  4. Vivanco I, Sawyers CL. 2002. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat. Rev. Cancer 2: 489-501. https://doi.org/10.1038/nrc839
  5. Maehama T, Dixon JE. 1999. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9: 125-128. https://doi.org/10.1016/S0962-8924(99)01519-6
  6. Osaki M, Oshimura Ma, Ito H. 2004. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9: 667-676. https://doi.org/10.1023/B:APPT.0000045801.15585.dd
  7. Vanhaesebroeck B, Alessi DR. 2000. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346: 561-576.
  8. Hemmings BA, Restuccia DF. 2012. Pi3k-pkb/akt pathway. Cold Spring Harbor Perspectives in Biology. 4: a011189.
  9. Luo J, Manning BD, Cantley LC. 2003. Targeting the PI3KAkt pathway in human cancer: rationale and promise. Cancer Cell 4: 257-262. https://doi.org/10.1016/S1535-6108(03)00248-4
  10. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baran M. 2004. PI3K/Akt signalling pathway and cancer. Cancer Treatment Rev. 30: 193-204. https://doi.org/10.1016/j.ctrv.2003.07.007
  11. Matei D, Chang DD, Jeng M-H. 2004. Imatinib mesylate (Gleevec) inhibits ovarian cancer cell growth through a mechanism dependent on platelet-derived growth factor receptor ${\alpha}$ and Akt inactivation. Clin. Cancer Res. 10: 681-690. https://doi.org/10.1158/1078-0432.CCR-0754-03
  12. Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, et al. 1998. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17.
  13. Manning BD, Cantley LC. 2007. AKT/PKB signaling: navigating downstream. Cell 129: 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
  14. Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K, et al. 2010. Small molecule inhibition of phosphatidylinositol- 3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc. Natl. Acad. Sci. 107: 20126-20131. https://doi.org/10.1073/pnas.1004522107
  15. Yip WK, Leong VCS, Abdullah MA, Yusoff S, Seow HF. 2008. Overexpression of phospho-Akt correlates with phosphorylation of EGF receptor, FKHR and BAD in nasopharyngeal carcinoma. Oncol. Rep. 19: 319-328.
  16. Okuzumi T, Fiedler D, Zhang C, Gray DC, Aizenstein B, Hoffman R, et al. 2009. Inhibitor hijacking of Akt activation. Nat. Chem. Biol. 5: 484-493. https://doi.org/10.1038/nchembio.183
  17. Kang Y, Kim B-G, Kim S, Lee Y, Yoon Y. 2017. Inhibitory potential of flavonoids on PtdIns (3, 4, 5) P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorg. Med. Chem. Lett. 27: 420-426. https://doi.org/10.1016/j.bmcl.2016.12.051
  18. Milburn CC, Maria D, Kelly SM, Price NC, Alessi DR, Van Aalten DM. 2003. Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem. J. 375: 531-538. https://doi.org/10.1042/bj20031229
  19. Wallace AC, Laskowski RA, Thornton JM. 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Design Select. 8: 127-134. https://doi.org/10.1093/protein/8.2.127
  20. Yoon H, Kim TW, Shin SY, Park MJ, Yong Y, Kim DW, et al. 2013. Design, synthesis and inhibitory activities of naringenin derivatives on human colon cancer cells. Bioorg. Med. Chem. Lett. 23: 232-238. https://doi.org/10.1016/j.bmcl.2012.10.130
  21. Jez JM, Bowman ME, Dixon RA, Noel JP. 2000. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. 7: 786-791. https://doi.org/10.1038/79025
  22. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. 2004. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comp. Chem. 25: 1605-1612. https://doi.org/10.1002/jcc.20084
  23. Miao B, Skidan I, Yang J, You Z, Fu X, Famulok M, et al. 2012. Inhibition of cell migration by PITENINs: the role of ARF6. Oncogene 31: 4317-4332. https://doi.org/10.1038/onc.2011.593
  24. Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, et al. 2001. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 61: 6105-6111.
  25. Li Y, Yang D-Q. 2010. The ATM inhibitor KU-55933 suppresses cell proliferation and induces apoptosis by blocking Akt in cancer cells with overactivated Akt. Mol. Cancer Therapeutics 9: 113-125.
  26. Lin H, Hsieh F, Song H, Lin J. 2005. Elevated phosphorylation and activation of PDK-1/AKT pathway in human breast cancer. Brit. J. Cancer 93: 1372-1381. https://doi.org/10.1038/sj.bjc.6602862
  27. Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H. 2010. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis 31: 1424-1433. https://doi.org/10.1093/carcin/bgq115
  28. Adhami VM, Syed DN, Khan N, Mukhtar H. 2012. Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem. Pharmacol. 84: 1277-1281. https://doi.org/10.1016/j.bcp.2012.07.012
  29. Lee MS, Tsai CW, Wang CP, Chen JH, Lin HH. 2017. Antiprostate cancer potential of gossypetin via inducing apoptotic and autophagic cell death. Mol. Carcinogenesis
  30. Kim YH, Lee YJ. 2007. TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. J. Cell. Biochem. 100: 998-1009. https://doi.org/10.1002/jcb.21098
  31. Brownson DM, Azios NG, Fuqua BK, Dharmawardhane SF, Mabry TJ. 2002. Flavonoid effects relevant to cancer. J. Nutrit. 132: 3482S-3489S.
  32. Lien EC, Dibble CC, Toker A. 2017. PI3K signaling in cancer: beyond AKT. Curr. Opin. Cell Biol. 45: 62-71. https://doi.org/10.1016/j.ceb.2017.02.007
  33. Zlotorynski E. 2017. Non-coding RNA: The cancer link (RNA) between PIP3 and AKT. Nat. Rev. Mol. Cell Biol. 18: 212-213.
  34. Ebner M, Lucic I, Leonard TA, Yudushkin I. 2017. PI (3, 4, 5) P 3 Engagement restricts Akt activity to cellular membranes. Mol. Cell 65: 416-431. e416. https://doi.org/10.1016/j.molcel.2016.12.028