DOI QR코드

DOI QR Code

Canonical Latin Square Algorithm for Round-Robin Home-and-Away Sports Leagues Scheduling

라운드-로빈 홈 앤드 어웨이 스포츠 리그 대진표 작성 정규형 라틴 방진 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 과학기술대학 멀티미디어공학과)
  • Received : 2018.05.20
  • Accepted : 2018.08.10
  • Published : 2018.08.31

Abstract

The home-and-way round-robin sports leagues scheduling problem with minimum brake is very hard to solve in polynomial time. This problem is NP-hard, the complexity status is not yet determined. This paper suggests round-robin sports leagues scheduling algorithm not computer-aided program but by hand with O(n) time complexity for arbitrary number of teams n with always same pattern. The algorithm makes a list of mathes using $n{\times}n$ canonical latin square for n=even teams. Then trying to get home(H) and away(A) with n-2 minimum number of brakes. Also, we get the n=odd scheduling with none brakes delete a team own maximum number of brakes from n=even scheduling.

최소 제동 수를 갖는 홈 앤드 어웨이 라운드-로빈 경기일정 대진표를 작성하는 문제는 매우 어려워 NP-난제로 알려져 있다. 본 논문에서는 임의의 팀 수 n에 대해서도 항상 동일한 패턴으로 경기일정 대진표를 O(n) 수행 복잡도로 컴퓨터 프로그램 도움 없이 직접 손으로 작성할 수 있는 알고리즘을 제안하였다. 제안된 알고리즘은 n=even 팀에 대해 $n{\times}n$ 정규형 라틴 방진을 작성하여 대진표를 작성하고, 최소 제동 수가 n-2 가 되도록 홈-어웨이를 배정하였다. 또한, n=odd에 대해서는 n=even 결과에서 최대 제동 수를 갖는 n번째 팀을 삭제하는 방법으로 제동이 전혀 없는 대진표를 작성하였다.

Keywords

References

  1. R. M. R. Lewis, "A Guide to Graph Colouring Algorithms and Applications: Chapter 7. Designing Sports Leagues," Springer, pp. 169-193, Oct. 2015, ISBN 978-3-319-25728-0, doi:10.1007/978-3-319-25730-3
  2. R. V. Rasmussen and M. A. Trick, "Round Robin Scheduling - A Survey," European Journal of Operational Research, Vol. 188, No. 3, pp. 617-636, Aug. 2008, doi:10.1016/j.ejor.2007.05.046
  3. T. Kirkman, "On a Problem in Combinations," Cambridge Dublin Math Journal, Vol. 2, pp. 191-204, 1847.
  4. D. de Werra, "Some Models of Graphs for Scheduling Sports Competitions," Discrete Applied Mathematics, Vol. 21, No. 1, pp. 47-65, Sep. 1988, doi:10.1016/0166-218X(88)90033-9
  5. R. Miyashiro and T. Matsui, "A Polynomial-time Algorithm to Find an Equitable Home-Away Assignment," Operational Research Letters, Vol. 33, No. 3, pp. 235-241, May 2005, doi:10.1016/j.orl.2004.06.004
  6. T. Rutjanisarakul and T. Jiarasuksakun, "A Sport Tournament Scheduling by Genetic Algorithm with Swing Method," Cornell University Library, pp. 1-7, arXiv:1704.04879, Apr. 2017.
  7. J. P. Hamiez and J. K. Hao, "Solving the Sports League Scheduling Problem with Tabu Search," Workshop on Local Search for Planning and Scheduling, pp. 24-36, Aug. 2000, doi:10.1007/3-540-45612-0_2
  8. S. B. Choi, S. S. Jeung, and T. Y. Han, "Home-Away Sports League Scheduling with Minimum Breaks," Journal of Korean Society of Sports Science, Vol. 24, No. 4, pp. 691-701, Aug. 2015, uci:G704-001369.2015.24.4.098
  9. J. P. Hamiez and J. K. Hao, "A Linear-time Algorithm to Solve the Sports League Scheduling Problem(prob026 of CSPLib)," Discrete Applied Mathematics, Vol. 143, No. 1-3, pp. 252-265, Sep. 2004, doi:10.1016/j.dam.2003.10.009
  10. M. Elf, M. Junger, and G. Rinaldi, "Minimizing Breaks by Maximizing Cuts," Operational Research Letters, Vol. 31, No. 5, pp. 343-349, Sep. 2003, doi:10.1016/S0167-6377(03)00025-7
  11. M. X. Goemans and D. P. Williamson, "Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems using Semidefinite Programming," Journal of ACM, Vol. 42, No. 6, pp. 1115-1145, Nov. 1995, doi:10.1145/227683.227684
  12. R. Miyashiro and T. Matsui, "Semidefinite Programming based Approaches to the Break Minimization Problem," Computers & Operations Research, Vol. 33, No. 7, pp. 1975-1982, Jul. 2006, doi:10.1016/j.cor.2004.09.030
  13. M. A. Trick, "A Schedule-then-Break Approach to Sports Timetabling," International Conference on the Practice and Theory of Automated Timetabling III, pp. 242-253, 2000.
  14. W. D. Wallis and J. C. George, "Introduction to Combinatorics," CRC Press, p. 212, 2011, ISBN 978-1-4398-0623-4