DOI QR코드

DOI QR Code

광고 캠페인의 소셜 네트워크 확산 구조에 대한 연구

How do advertisements spread on social networks?

  • 김유나 (한양대학교 광고홍보학과) ;
  • 한상필 (한양대학교 광고홍보학과)
  • Kim, Yuna (Department of Advertising and Public Relations, Hanyang University) ;
  • Han, Sangpil (Department of Advertising and Public Relations, Hanyang University)
  • 투고 : 2018.06.13
  • 심사 : 2018.08.20
  • 발행 : 2018.08.28

초록

본 연구의 목적은 광고 캠페인이 소셜 네트워크에서 어떻게 확산되고 있으며, 광고의 핵심 요인인 광고모델이 확산에 어떤 역할을 하는지 그 패턴과 양상을 살펴보기 위한 것이다. 본 연구 목적을 달성하기 위해 국내 맥주 브랜드인 '클라우드(Kloud)'를 수집 키워드로 하여 텍스트마이닝과 소셜 네트워크 분석을 실시하였다. 구체적으로 '클라우드' 광고의 영향이 어떻게 SNS에 나타나는지 살펴보기 위해, '설현'이 광고모델로 처음 등장한 'Good Body' 광고 집행 이후 2달 간 네이버 블로그와 카페의 소셜 데이터를 수집하여 분석하였다, 그 결과, 광고 이후 클라우드에 대해 '?고 트렌디한 스타일', '맥주 브랜드', '맥주와 어울리는 음식', '럭셔리한 맥주 음용 장소', '여가 트렌드', 'SNS 활동' 등으로 인식하는 것으로 나타났다. 또한 클라우드 광고 모델 '설현' 역시 모델 이미지를 브랜드에 전이시키는 동시에 광고의 USP 및 브랜드명을 잘 전달하고 있는 것으로 나타나, 광고 모델이 소셜 미디어 상에서 광고와 브랜드의 확산에 영향을 주는 주요 요인임을 확인할 수 있었다. 본 연구는 소셜 네트워크 분석을 이용하여 광고 캠페인의 SNS 상의 확산 구조와 패턴을 밝혀냄으로써 광고 캠페인의 효율적인 운영 관리에 실무적인 기여를 했다는 의의를 갖는다.

The purpose of this study is to investigate how the advertising campaign is spreading in social networks, and how the advertising model plays an important role in advertisement diffusion. In order to grasp the diffusion patterns of advertising, a text mining and social network analysis were conducted using the beer brand 'Kloud' as a collection keyword. After analyzing the social data for two months since the on-air of 'Good Body' advertisement, which was the first ad that "Sulhyun" appeared in. After the launch of the ad, Kloud has been mainly associated with keywords such as 'yavis & trendy style', 'beer brand', 'beer matching food', 'luxury beer drinking place', 'leisure trend', and 'SNS activity', etc. In addition, "Sul Hyun" also showed that an advertising model contributes to the spread of advertisement on social media in terms of image transition as well as brand's name and unique selling point.

키워드

참고문헌

  1. C. Li. (2015). Participation, Wiseberry.
  2. P. Kotler, H. Kartajaya & I. Setiawan. (2017). Marketing 4.0, Wiley.
  3. D. Boyd. (2008). Why Youth [heart] Social Network Sites: The Role of Networked Publics in Teenage Social Life. In Youth, Identity, and Digital Media, D. Buckingham, Ed. Cambridge: MIT Press.
  4. M. Choi. (2009). A Study on the Diffusion of Social Media and Recognition of Audience on Media Contents. Korean Association For Communication And Information Studies, 2009 Autumn periodical conference, 5-31.
  5. D. Boyd & N. Ellision. (2007). Social Network Sites: Definition, History and Scholarship. Journal of Computer-Mediated Communication, 13(1), 18-29.
  6. J. H. Kim. (2011). Research on the Diffusion Process of Social Media Advertisement and Advertising Effect, KOBACO : Seoul, Korea.
  7. D. Iacobucc & N. Hopkins. (1992). Modeling dyadic interactions and networks in marketing. Journal of Marketing Research, 29, 5-17. https://doi.org/10.1177/002224379202900102
  8. G. R. Henderson, D. Iacobucci & B. J. Calder. (1998). Brand diagnostics: Mapping branding effects using consumer associative networks. European Journal of Operational Research, 111, 306-327. https://doi.org/10.1016/S0377-2217(98)00151-9
  9. C. H. Ci. (2010). A New Way to Structure a Brand Association Network and Proposition for Future Studies, Korean Association for Advertising and Public Relations, 12(3), 128-151.
  10. Y. I. Yoon. (2016). Social Network Analysis of Changing Perceptions about Camping. Tourism Mnagement Research Organization, 20(2), 265-288.
  11. S. C. Song, S. H. Park & G. T. Yeo. (2018). SNA Approach for Analyzing the Research Trend of China''s Logistics. Journal of Digital Convergence, 16(5), 55-63. https://doi.org/10.14400/JDC.2018.16.5.055
  12. K. David & Y. Song. (2008), Social Network Analysis: Second Edison. Quantitative Applications in the Social Sciences.
  13. W. Wang & R. Rada. (1998). Structured hypertext with Domain Semantics. ACM Train Inform System, 16, 372-412. https://doi.org/10.1145/291128.291132
  14. J. S. Kim. (2012). Big Data Utilization and Related Technique and Technology Analysis. The Korea Contents Association Review, 10(1), 34-40. https://doi.org/10.20924/CCTHBL.2012.10.1.034
  15. M. J. Kim & C. J. Kim. (2017). Analyzing Architectural History Terminologies by Test Mining and Association Analysis. Journal of Digital Convergence, 15(1), 443-452. https://doi.org/10.14400/JDC.2017.15.1.443