DOI QR코드

DOI QR Code

Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of Pyropia yezoensis (Bangiales, Rhodophyta) APX and MnSOD in Chlamydomonas

  • Lee, Hak-Jyung (Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University) ;
  • Yang, Ho yeon (Microbial Institute for Fermentation Industry) ;
  • Choi, Jong-il (Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University)
  • Received : 2018.02.19
  • Accepted : 2018.04.16
  • Published : 2018.07.28

Abstract

Seaweeds produce antioxidants to counteract environmental stresses, and these antioxidant genes are regarded as important defense strategies for marine algae. In this study, the expression of Pyropia yezoensis (Bangiales, Rhodophyta) ascorbate peroxidase (PyAPX) and manganese-superoxide dismutase (PyMnSOD) was examined by qRT-PCR in P. yezoensis blades under abiotic stress conditions. Furthermore, the functional relevance of these genes was explored by overexpressing them in Chlamydomonas. A comparison of the different expression levels of PyAPX and PyMnSOD after exposure to each stress revealed that both genes were induced by high salt and UVB exposure, being increased approximately 3-fold after 12 h. The expression of the PyAPX and PyMnSOD genes also increased following exposure to $H_2O_2$. When these two genes were overexpressed in Chlamydomonas, the cells had a higher growth rate than control cells under conditions of hydrogen peroxide-induced oxidative stress, increased salinity, and UV exposure. These data suggest that Chlamydomonas is a suitable model for studying the function of stress genes, and that PyAPX and PyMnSOD genes are involved in the adaptation and defense against stresses that alter metabolism.

Keywords

References

  1. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21: 809-818. https://doi.org/10.1093/molbev/msh075
  2. Hwang MS, Chung IK, Oh YS. 1997. Temperature responses of Porphyra tenera Kjellman and P. yezoensis Ueda (Bangiales, Rhodophyta) from Korea. Algae 12: 207-213.
  3. Wang JX, Milton S, Hu Q. 2011. Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. J. Appl. Phycol. 23: 995-1003. https://doi.org/10.1007/s10811-010-9631-6
  4. Asada K. 1999. The water-water cycle as alternative photon and electron sinks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355: 1419-1431.
  5. Kwon SJ, Choi EY, Choi YJ. 2006. Proteomics studies of posttranslational modifications in plants. J. Exp. Bot. 57: 1547-1551. https://doi.org/10.1093/jxb/erj137
  6. Mur LAJ, Tim L, Carver W. 2006. No way to live: the various roles of nitric oxide in plant-pathogen interactions. J. Exp. Bot. 57: 489-505. https://doi.org/10.1093/jxb/erj052
  7. Allen R. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049-1054. https://doi.org/10.1104/pp.107.4.1049
  8. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, et al. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1035-1319.
  9. Priya B, Premanandh J, Dhanalakshmi TR, Uma L, Prabaharan D, Subramanian G. 2007. Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. BMC Genomics 8: 435-444. https://doi.org/10.1186/1471-2164-8-435
  10. Wang F, Wu QH, Zhang ZD, Chen SF, Zhou RC. 2013. Cloning, expression, and characterization of iron superoxide dismutase in Sonneratia alba, a highly salt tolerant mangrove tree. Protein 32: 259-265. https://doi.org/10.1007/s10930-013-9482-5
  11. Allen R. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049-1054. https://doi.org/10.1104/pp.107.4.1049
  12. Hernandez J, Jimenez A, Mullineaux P, Sevilla F. 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 23: 853-862. https://doi.org/10.1046/j.1365-3040.2000.00602.x
  13. Sairam RK, Saxena DC. 2000. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J. Agron. Crop Sci. 184: 55-61. https://doi.org/10.1046/j.1439-037x.2000.00358.x
  14. Peltzer D, Polle A. 2001. Diurnal fluctuations of antioxidative systems in leaves of field-grown beech trees (Fagus sylvatica): responses to light and temperature. Physiol. Plant. 111: 158-164. https://doi.org/10.1034/j.1399-3054.2001.1110205.x
  15. Collen J, Davison I. 1999. Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Environ. 22: 1143-1151. https://doi.org/10.1046/j.1365-3040.1999.00477.x
  16. Burritt DJ, Larkindale J, Hurd CL. 2002. Antioxidant metabolism in the intertidal seaweed Stictosiphonia arbuscula following desiccation. Planta 215: 829-838. https://doi.org/10.1007/s00425-002-0805-6
  17. Malanga G, Puntarulo S. 1995. Oxidative stress and antioxidant content in Chlorella vulgaris after exposure to ultraviolet-B radiation. Physiol. Plant. 94: 672-679. https://doi.org/10.1111/j.1399-3054.1995.tb00983.x
  18. Collen J, Davison I. 1999. Reactive oxygen metabolism in intertidal Fucus spp. (Phaeophyceae). J. Phycol. 35: 62-69. https://doi.org/10.1046/j.1529-8817.1999.3510062.x
  19. Collen J, Davison I. 1999. Reactive oxygen production and damage in intertidal Fucus spp. (Phaeophyceae). J. Phycol. 35: 54-61. https://doi.org/10.1046/j.1529-8817.1999.3510054.x
  20. Choo KS, Nilsson J, Pedersen M, Snoeijs P. 2005. Photosynthesis, carbon uptake and antioxidant defence in two coexisting filamentous green algae under different stress conditions. Mar. Ecol. Prog. Ser. 292: 127-138. https://doi.org/10.3354/meps292127
  21. Dring MJ. 2006. Stress resistance and disease in seaweeds: the role of reactive oxygen metabolism. Adv. Bot. Res. 43: 175-207.
  22. Contreras-Porcia L, Thomas D, Flores V, Correa JA. 2011. Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). J. Exp. Bot. 62: 1815-1829. https://doi.org/10.1093/jxb/erq364
  23. Pise NM, Gaikwad DK, Jagtap TG. 2013. Oxidative stress and antioxidant indices of the marine red alga Porphyra vietnamensis. Acta Bot. Croat. 72: 197-209. https://doi.org/10.2478/v10184-012-0024-6
  24. Wu H. 2016. Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). Biomed. Res. Int. 2016: 7383918.
  25. Den RM, Han M, Niyogi KK. 2001. Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends Plant Sci. 6: 364-371. https://doi.org/10.1016/S1360-1385(01)02018-0
  26. Harris EH. 2001. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 363-406. https://doi.org/10.1146/annurev.arplant.52.1.363
  27. Siripornadulsil S, Traina S, Verma DPS, Sayre RT. 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14: 2837-2847. https://doi.org/10.1105/tpc.004853
  28. Schroda M, Beck CF, Vallon O. 2002. Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J. 31: 445-455. https://doi.org/10.1046/j.1365-313X.2002.01371.x
  29. Shrager J, Hauser C, Chang CW, Harris EH, Davies J, McDermott J, et al. 2003. Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol. 131: 401-408. https://doi.org/10.1104/pp.016899
  30. Kumar SV, Basu B, Rajam MV. 2005. Modulation of polyamine levels influence growth and cell division in Chlamydomonas reinhardtii. Physiol. Mol. Biol. Plants 11: 1-6.
  31. Hippler M, Redding K, Rochaix JD. 1998. Chlamydomonas genetics, a tool for the study of bioenergetic pathways. Biochim. Biophys. Acta 1367: 1-62. https://doi.org/10.1016/S0005-2728(98)00136-4
  32. Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N. 2006. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc. Natl. Acad. Sci. USA 103: 4771-4776. https://doi.org/10.1073/pnas.0509501103
  33. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-251. https://doi.org/10.1126/science.1143609
  34. Kim EC, Park HS, Jung Y, Choi DW. 2011. Identification of the high-temperature response genes from Porphyra seriata (Rhodophyta) expression sequence tags and enhancement of heat tolerance of Chlamydomonas (Chlorophyta) by expression of the Porphyra HTR2 gene. J. Phycol. 47: 821-828. https://doi.org/10.1111/j.1529-8817.2011.01008.x
  35. Park HS, Jeong WJ, Kim EC, Jung Y, Lim JM, Hwang MS, et al. 2012. Heat shock protein gene family of the Porphyra seriata and enhancement of heat stress tolerance by PsHSP70 in Chlamydomonas. Mar. Biotechnol. (NY) 14: 332-342. https://doi.org/10.1007/s10126-011-9417-0
  36. Jin YJ, Yang SW, Im SO, Jeong WJ, Park EJ, Choi DW. 2017. Overexpression of the small heat shock protein, PtsHSP19.3 from marine red algae, Pyropia tenera (Bangials, Rhodophyta) enhances abiotic stress tolerance in Chlamydomonas. J. Plant Biotechnol. 44: 287-295. https://doi.org/10.5010/JPB.2017.44.3.287
  37. Lee HN, Kim SH, Han YJ, Im SO, Jeong WJ, Park EJ, et al. 2017. PsCYP1 of marine red alga Pyropia seriata (Bangiales, Rhodophyta) confers salt and heat tolerance in Chlamydomonas. J. Appl. Phycol. 29: 617-625. https://doi.org/10.1007/s10811-016-0934-0
  38. Hema R, Senthil-Kumar M, Shivakumar S, Chandrasekhara Reddy P, Udayakumar M. 2007. Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta 226: 655-670. https://doi.org/10.1007/s00425-007-0514-2
  39. Davison IR, Pearson GA. 1996. Enviromental stress in intertidal seaweeds. J. Phycol. 32: 197-211. https://doi.org/10.1111/j.0022-3646.1996.00197.x
  40. Flores-Moya A, Hanelt D, Figueroa FL, Altamirano M, Viñegla B, Salles S. 1999. Involvement of solar UV-B radiation in recovery of inhibited photosynthesis in the brown alga Dictyota dichotoma (Hudson) Lamouroux. J. Photochem. Photobiol. B. Biol. 49: 129-135. https://doi.org/10.1016/S1011-1344(99)00046-9
  41. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  42. Hader DP, Helbling EW, Williamson CE, Worrest RC. 2011. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 10: 242-260. https://doi.org/10.1039/c0pp90036b
  43. Dunlap WC, Shick JM, Yamamoto Y. 1999. Sunscreens, oxidative stress and antioxidant functions in marine organisms of the Great Barrier Reef. Redox Rep. 4: 301-306. https://doi.org/10.1179/135100099101535142
  44. Li L, Zhao J, Tang X. 2009. Ultraviolet irradiation induced oxidative stress and response of antioxidant system in an intertidal macroalgae Corallina officinalis L. J. Environ. Sci. 22: 716-722.
  45. Saez CA, Roncarati F, Moenne A, Moody AJ, Brown MT. 2015. Copper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories. Aquat. Toxicol. 159: 81-89. https://doi.org/10.1016/j.aquatox.2014.11.019
  46. Sung MS, Hsu YT, Hsu YT, Wu TM, Lee TM. 2009. Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress. Mar. Biotechnol. (NY) 11: 199-209. https://doi.org/10.1007/s10126-008-9134-5
  47. Morita S, Kaminaka H, Masumura T, Tanaka K. 1999. Induction of rice cytosolic ascorbate peroxide mRNA by oxidative stress: the involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol. 40: 417-422. https://doi.org/10.1093/oxfordjournals.pcp.a029557
  48. Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S. 2000. Are diverse signaling pathways integrated in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy? Phil. Trans. R. Soc. Lond. B Biol. Sci. 355: 1531-1540. https://doi.org/10.1098/rstb.2000.0713
  49. Lim JM, Ahn JW, Hwangbo K, Choi DW, Park EJ, Hwang MS, et al. 2013. Development of cyan fluorescent protein (CFP) reporter system in green alga Chlamydomonas reinhardtii and macroalgae Pyropia sp. Plant Biotechnol. Rep. 7: 407-414. https://doi.org/10.1007/s11816-013-0274-3

Cited by

  1. 방사선 돌연변이 방사무늬김(Pyropia yezoensis)의 성분 분석과 항산화 활성 vol.53, pp.4, 2020, https://doi.org/10.5657/kfas.2020.0524
  2. Biopeptides of Pyropia yezoensis and their potential health benefits: A review vol.11, pp.9, 2021, https://doi.org/10.4103/2221-1691.321127