References
- Over RS, Michaels SD. 2014. Open and closed: the roles of linker histones in plants and animals. Mol. Plant 7: 481-491. https://doi.org/10.1093/mp/sst164
-
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at
$2.8\;{\AA}$ resolution. Nature 389: 251-260. https://doi.org/10.1038/38444 - Lyons SM, Cunningham CH, Welch JD, Groh B, Guo AY, Wei B, et al. 2016. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues. Nucleic Acids Res. 44: 9190-9205
- Sournia A. 1995. Red tide and toxic marine phytoplankton of the world ocean: an inquiry into biodiversity, pp. 103-112. In: Proceedings of the 6th International Conference on Toxic Marine Phytoplankton, Harmful Marine Algal Blooms, 1993, Nantes, France. Lavoisier Publising/Intercept, Paris, France.
- John U, Litaker RW, Montresor M, Murray S, Brosnahan ML, Anderson DM. 2014. Formal revision of the Alexandrium tamarense species complex (Dinophyceae) taxonomy: the introduction of five species with emphasis on molecularbased (rDNA) classification. Protist 165: 779-804. https://doi.org/10.1016/j.protis.2014.10.001
- Wang L, Zhuang Y, Zhang H, Lin X, Lin S. 2014. DNA barcoding species in Alexandrium tamarense complex using ITS and proposing designation of five species. Harmful Algae 31: 100-113. https://doi.org/10.1016/j.hal.2013.10.013
- Imai I, Yamaguchi M, Hori Y. 2006. Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res. 1: 71-84. https://doi.org/10.3800/pbr.1.71
- Waller RF, Jackson CJ. 2009. Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31: 237-245. https://doi.org/10.1002/bies.200800164
- Barbrook A, Howe C. 2000. Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol. Gen. Genet. 263: 152-158. https://doi.org/10.1007/s004380050042
- Dodge J. 1971. A dinoflagellate with both a mesocaryotic and a eucaryotic nucleus I. Fine structure of the nuclei. Protoplasma 73: 145-157. https://doi.org/10.1007/BF01275591
- Costas E, Goyanes V. 2005. Architecture and evolution of dinoflagellate chromosomes: an enigmatic origin. Cytogenet. Genome Res. 109: 268-275. https://doi.org/10.1159/000082409
- Shupe K, Rizzo PJ. 1983. Nuclease digestion of chromatin from the eukaryotic algae Olisthodiscus luteus, Peridinium balticum, and Crypthecodinium cohnii. J. Protozool. 30: 599-606. https://doi.org/10.1111/j.1550-7408.1983.tb01429.x
- Herzog M, Soyer M. 1981. Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive species Prorocentrum micans E. Eur. J. Cell Biol. 23: 295-302.
- Rill RL, Livolant F, Aldrich HC, Davidson MW. 1989. Electron microscopy of liquid crystalline DNA: direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma 98: 280-286. https://doi.org/10.1007/BF00327314
- Chan Y-H, Wong JT. 2007. Concentration-dependent organization of DNA by the dinoflagellate histone-like protein HCc3. Nucleic Acids Res. 35: 2573-2583. https://doi.org/10.1093/nar/gkm165
- Chan Y, Kwok A, Tsang JS, Wong JT. 2006. Alveolata histone?like proteins have different evolutionary origins. J. Evolutionary Biol. 19: 1717-1721. https://doi.org/10.1111/j.1420-9101.2006.01089.x
- Chudnovsky Y, Li JF, Rizzo PJ, Hastings J, Fagan TF. 2002. Cloning, expression, and characterization of a histone-like protein from the marine dinoflagellate Lingulodinium polyedrum. J. Phycol. 38: 543-550. https://doi.org/10.1046/j.1529-8817.2002.01186.x
- Wargo MJ, Rizzo PJ. 2000. Characterization of Gymnodinium mikimotoi (Dinophyceae) nuclei and identification of the major histone-like protein, HGm. J. Phycol. 36: 584-589. https://doi.org/10.1046/j.1529-8817.2000.99122.x
- Kohli GS, John U, Figueroa RI, Rhodes LL, Harwood DT, Groth M, et al. 2015. Polyketide synthesis genes associated with toxin production in two species of Gambierdiscus (Dinophyceae). BMC Genomics 16: 410. https://doi.org/10.1186/s12864-015-1625-y
- Zhang S, Sui Z, Chang L, Kang K, Ma J, Kong F, et al. 2014. Transcriptome de novo assembly sequencing and analysis of the toxic dinoflagellate Alexandrium catenella using the Illumina platform. Gene 537: 285-293. https://doi.org/10.1016/j.gene.2013.12.041
- Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. 2013. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23: 1399-1408. https://doi.org/10.1016/j.cub.2013.05.062
- Roy S, Morse D. 2012. A full suite of histone and histone modifying genes are transcribed in the dinoflagellate Lingulodinium. PLoS One 7: e34340. https://doi.org/10.1371/journal.pone.0034340
- B ayer T , Aranda M , Sunagawa S, Y um L K, D eSalvo M K, Lindquist E, et al. 2012. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reefbuilding corals. PLoS One 7: e35269. https://doi.org/10.1371/journal.pone.0035269
- Lin S, Zhang H, Zhuang Y, Tran B, Gill J. 2010. Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. Proc. Natl. Acad. Sci. USA 107: 20033-20038. https://doi.org/10.1073/pnas.1007246107
- Guillard RR. 1975. Culture of phytoplankton for feeding marine invertebrates, pp. 29-60. In Smith WL, Chanley MH (eds.), Culture of Marine Invertebrate Animals. Plenum Press, New York.
- Geng H, Sui Z, Zhang S, Du Q, Ren Y, Liu Y, et al. 2015. Identification of microRNAs in the toxigenic dinoflagellate Alexandrium catenella by high-throughput Illumina sequencing and bioinformatic analysis. PLoS One 10: e0138709. https://doi.org/10.1371/journal.pone.0138709
- Galleron C. 1976. Synchronization of the marine dinoflagellate Amphydinium carteri in dense cultures. J. Phycol. 12: 69-73.
-
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the
$2-{\Delta}{\Delta}CT$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262 - Lupke M, Frahm J, Lantow M, Maercker C, Remondini D, Bersani F, et al. 2006. Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim. Biophys. Acta 1763: 402-412. https://doi.org/10.1016/j.bbamcr.2006.03.003
- Kruger NJ. 1994. The Bradford method for protein quantitation. Methods Mol. Biol. 32: 9-15.
- Shechter D, Dormann HL, Allis CD, Hake SB. 2007. Extraction, purification and analysis of histones. Nat. Protoc. 2: 1445-1457. https://doi.org/10.1038/nprot.2007.202
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
- Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191. https://doi.org/10.1093/bioinformatics/btp033
- Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. 2005. Protein identification and analysis tools on the ExPASy server, pp. 571-607. In Walker JM (ed.), The Proteomics Protocols Handbook. Humana Press, New York.
- Mitchell A, Chang H-Y, Daugherty L, Fraser M, Hunter S, Lopez R, et al. 2014. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43(Database Issue): D213-D221.
- Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: D279-D285. https://doi.org/10.1093/nar/gkv1344
- Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10: 845-858. https://doi.org/10.1038/nprot.2015.053
- Mariadason JM. 2008. HDACs and HDAC inhibitors in colon cancer. Epigenetics 3: 28-37. https://doi.org/10.4161/epi.3.1.5736
- Orphanides G, LeRoy G, Chang C-H, Luse DS, Reinberg D. 1998. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92: 105-116. https://doi.org/10.1016/S0092-8674(00)80903-4
- Gornik SG, Ford KL, Mulhern TD, Bacic A, McFadden GI, Waller RF. 2012. Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr. Biol. 22: 2303-2312. https://doi.org/10.1016/j.cub.2012.10.036
- de la Espina SMD, Alverca E, Cuadrado A, Franca S. 2005. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur. J. Cell Biol. 84: 137-149. https://doi.org/10.1016/j.ejcb.2005.01.002
- Rizzo PJ, Nooden LD. 1972. Chromosomal proteins in the dinoflagellate alga Gyrodinium cohnii. Science 176: 796-797. https://doi.org/10.1126/science.176.4036.796
- Tomas RN, Cox ER, Steidinger KA. 1973. Peridinium balticum (Levander) Lemmermann, an unusual dinoflagellate with a mesocaryotic and an eucaryotic nucleus. J. Phycol. 9: 91-98.
- Azevedo C. 1989. Fine structure of Perkinsus atlanticus n. sp. (Apicomplexa, Perkinsea) parasite of the clam Ruditapes decussatus from Portugal. J. Parasitol. 627-635.
- Marinov GK, Lynch M. 2016. Diversity and divergence of dinoflagellate histone proteins. G3 (Bethesda) 6: 397-422.
- Figueroa RI, Bravo I, Fraga S, Garcés E, Llaveria G. 2009. The life history and cell cycle of Kryptoperidinium foliaceum, a dinoflagellate with two eukaryotic nuclei. Protist 160: 285-300. https://doi.org/10.1016/j.protis.2008.12.003
- Suganuma T, Workman JL. 2011. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80: 473-499. https://doi.org/10.1146/annurev-biochem-061809-175347
- Marzluff WF, Wagner EJ, Duronio RJ. 2008. Metabolism and regulation of canonical histone mRNAs: life without a poly (A) tail. Nat. Rev. Genet. 9: 843-854. https://doi.org/10.1038/nrg2438
- Ehinger A, Denison SH, May GS. 1990. Sequence, organization and expression of the core histone genes of Aspergillus nidulans. Mol. Gen. Genet. 222: 416-424. https://doi.org/10.1007/BF00633848
- Wu RS, Bonner WM. 1981. Separation of basal histone synthesis from S-phase histone synthesis in dividing cells. Cell 27: 321-330. https://doi.org/10.1016/0092-8674(81)90415-3
- Smith AP, Jain A, Deal RB, Nagarajan VK, Poling MD, Raghothama KG, et al. 2010. Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator. Plant Physiol. 152: 217-225. https://doi.org/10.1104/pp.109.145532
- Sura W, Kabza M, Karlowski WM, Bieluszewski T, Kus-Slowinska M, Paweloszek L, et al. 2017. Dual role of the histone variant H2A.Z in transcriptional regulation of stressresponse genes. Plant Cell 29: 791-807. https://doi.org/10.1105/tpc.16.00573
- Li M, Shi X, Guo C, Lin S. 2016. Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae. Front. Microbiol. 7: 826.
- Williams AS, Marzluff WF. 1995. The sequence of the stem and flanking sequences at the 3' end of histone mRNA are critical determinants for the binding of the stem-loop binding protein. Nucleic Acids Res. 23: 654-662. https://doi.org/10.1093/nar/23.4.654
- Yang L, Duff MO, Graveley BR, Carmichael GG, Chen L-L. 2011. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12: 1. https://doi.org/10.1186/gb-2011-12-S1-P1
- Lai E C, B urks C, Posakony JW. 1998. The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development 125: 4077-4088.
- Singh RK, Paik J, Gunjan A. 2008. Generation and management of excess histones during the cell cycle. Front. Biosci. (Landmark Ed.) 14: 3145-3158.
- Nelson DM, Ye X, Hall C, Santos H, Ma T, Kao GD, et al. 2002. Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol. Cell. Biol. 22: 7459-7472. https://doi.org/10.1128/MCB.22.21.7459-7472.2002
- Morillo-Huesca M, Munoz-Centeno M, Singh R, Reddy G, Oreal V, Liang D, et al. 2010. Accumulation of transcriptionevicted histones induces a CLN3-dependent cell cycle delay in G1. PLoS Genet. 6: e1000964. https://doi.org/10.1371/journal.pgen.1000964
- Singh RK, Gonzalez M, Kabbaj M-HM, Gunjan A. 2012. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae. PLoS One 7: e36295. https://doi.org/10.1371/journal.pone.0036295
- Commerford S, Carsten A, Cronkite E. 1982. Histone turnover within nonproliferating cells. Proc. Natl. Acad. Sci. USA 79: 1163-1165. https://doi.org/10.1073/pnas.79.4.1163
- Gunjan A, Verreault A. 2003. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115: 537-549. https://doi.org/10.1016/S0092-8674(03)00896-1
- Lubec G, Afjehi-Sadat L. 2007. Limitations and pitfalls in protein identification by mass spectrometry. Chem. Rev. 107: 3568-3584. https://doi.org/10.1021/cr068213f
- Sterner DE, Berger SL. 2000. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64: 435-459. https://doi.org/10.1128/MMBR.64.2.435-459.2000
- Vaquero A. 2009. The conserved role of sirtuins in chromatin regulation. Int. J. Dev. Biol. 53: 303-322. https://doi.org/10.1387/ijdb.082675av
- Wood A, Shilatifard A. 2004. Posttranslational modifications of histones by methylation. Adv. Protein Chem. 67: 201-222.
- Guerra-Calderas L, Gonzalez-Barrios R, Herrera LA, de Leon DC, Soto-Reyes E. 2015. The role of the histone demethylase KDM4A in cancer. Cancer Genet. 208: 215-224. https://doi.org/10.1016/j.cancergen.2014.11.001
- Musselman CA, Lalonde M-E, Cote J, Kutateladze TG. 2012. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19: 1218-1227. https://doi.org/10.1038/nsmb.2436
- Teif VB, Rippe K. 2009. Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res. 37: 5641-5655. https://doi.org/10.1093/nar/gkp610
- Reinberg D, Sims RJ. 2006. de FACTo nucleosome dynamics. J. Biol. Chem. 281: 23297-23301. https://doi.org/10.1074/jbc.R600007200
- Burgess RJ, Zhang Z. 2013. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20: 14-22. https://doi.org/10.1038/nsmb.2461
Cited by
- The Biochemistry and Evolution of the Dinoflagellate Nucleus vol.7, pp.8, 2019, https://doi.org/10.3390/microorganisms7080245