References
- Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8: 199-216. https://doi.org/10.1007/s10311-010-0297-8
- Thornton I, Rautiu R, Brush S. 2001. Lead: The Facts. Ian Allan Printing Ltd., London.
- Triantafyllidou S, Edwards M. 2009. Lead (Pb) in U.S. drinking water: school case studies, detection challenges and public health considerations. In: Your Drinking Water: Challenges and Solutions for the 21st Century. Drinking Water Symposium, April 20th & 21st, 2009, Yale University.
- Dermont G, Bergeron M, Mercier G, Richer-Lafleche M. 2008. Soil washing for metal removal: a review of physical/ chemical technologies and field applications. J. Hazard. Mater. 152: 1-31. https://doi.org/10.1016/j.jhazmat.2007.10.043
- Jabeen R, Ahmad A, Iqbal M. 2009. Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot. Rev. 75: 339-364. https://doi.org/10.1007/s12229-009-9036-x
- Shao HB, Chu LY, Ni FT, Guo DG, Li H, Li WX. 2010. Perspective on phytoremediation for improving heavy metal-contaminated soils, pp. 227-244. In Ashraf M, Ozturk M, Ahmad MSA (eds.), Plant Adaptation and Phytoremediation. Dordrecht, Springer.
- Jiang CY, Sheng XF, Qian M, Wang QY. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164. https://doi.org/10.1016/j.chemosphere.2008.02.006
- Sheng XF, Jiang CY, He LY. 2008. Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Can. J. Microbiol. 54: 417-422. https://doi.org/10.1139/W08-020
- Sheng XF, Xia JJ. 2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64: 1036-1042. https://doi.org/10.1016/j.chemosphere.2006.01.051
- Sheng X-F, Xia JJ, Jiang CY, He LY, Qian M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 156: 1164-1170. https://doi.org/10.1016/j.envpol.2008.04.007
- Lindsay WL. 1979. Chemical Equilibrium in Soils. Wiley Interscience Publishers, New York.
- Zhao S, Jia L, Duo L. 2013. The use of biodegradable chelators for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching. Bioresour. Technol. 129: 249-255. https://doi.org/10.1016/j.biortech.2012.11.075
- Evangelou MWH, Bauer U, Ebel M, Schaeffer A. 2007. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco, Nicotiana tabacum. Chemosphere 68: 345-353. https://doi.org/10.1016/j.chemosphere.2006.12.058
- Usman ARA, Almaroai YA, Ahmad M, Vithanage M, Ok YS. 2013. Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil. J. Hazard. Mater. 262: 1022-1030. https://doi.org/10.1016/j.jhazmat.2013.04.032
- Fasim F, Ahmed N, Parsons R, Gadd GM. 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett. 213: 1-6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x
- Long XX, Chen XM, Chen YG, Wong JW-C, Wei ZB, Wu QT. 2011. Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J. Microbiol. Biotechnol. 27: 1197-1207. https://doi.org/10.1007/s11274-010-0568-3
- Braud A, Jezequel K, Vieille E, Tritter A, Lebeau T. 2006. Changes in extractability of Cr and Pb in a poly contaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut. 6: 261-279. https://doi.org/10.1007/s11267-005-9022-1
- Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter, pp. 961-1010. In Sparks DL (ed.), Method of Soil Analysis, Part 3, Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Madison, WI.
- Zheljazkov VD, Nielsen NE. 1996. Effect of heavy metals on peppermint and cornmint. Plant Soil 178: 59-66. https://doi.org/10.1007/BF00011163
- Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42: 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Mergeau MD, Nies HG, Schlegel J, Gerits P, Charles van Gijsegem F. 1985. Alcaligenes eutrophus CH34 is a facultative chemolitotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328-334. https://doi.org/10.1128/JB.162.1.328-334.1985
- Gordon SA, Weber RP. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192-195. https://doi.org/10.1104/pp.26.1.192
- Alexander DB, Zuberer DA. 1991. Use of chrome Azurol-S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12: 39-45. https://doi.org/10.1007/BF00369386
- Zaidi S, Usmani S, Singh BR, Musarrat J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bio inoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057
- Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
- Affan QA, Shoeb E, Badar U, Akhtar J. 2009. Isolation and characterization of bacterial isolates having heavy metal tolerance. J. Basic Appl. Sci. 5: 55-60.
- Nonnoi F, Chinnaswamy A, de la Torre VSG, de la Pena TC, Lucas MM, Pueyo JJ. 2012. Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercurycontaminated soils. Appl. Soil Ecol. 61: 49-59. https://doi.org/10.1016/j.apsoil.2012.06.004
- Jones JB Jr, Case VW. 1990. Sampling, handling, and analyzing plant tissue samples, pp. 389-447. In Westerman RL (ed.), Soil Testing and Plant Analysis. Soil Science Society of America, Inc., Madison, WI.
- NYS. 2006. New York State Brownfield Cleanup Program Development of Soil Cleanup Objectives Technical Support Document. New York State Department of Environmental Conservation and New York State Department of Health, Albany, NY. Available from http://www.dec.ny.gov/chemical/34189.html.
- Davies PJ. 2010. The Plant Hormones: Their Nature, Occurrence and Functions, 3rd Ed. Kluwer Academic Publishers, New York.
- Malhotra M, Srivastava S. 2009. Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and i ts ability to modulate plant growth. Eur. J. Soil Biol. 45: 73-80. https://doi.org/10.1016/j.ejsobi.2008.05.006
- Patten CL, Glick BR. 2002. The role of bacterial indole acetic acid in the development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
- Ribeiro CM, Cardoso EJBN. 2012. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiol. Res. 167: 69-78. https://doi.org/10.1016/j.micres.2011.03.003
- Ji LY, Zhang WW, Yu D, Cao YR, Xu H. 2012. Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis. World J. Microbiol. Biotechnol. 28: 293-301. https://doi.org/10.1007/s11274-011-0819-y
- Rajkumar M, Ae N, Narasimha M, Prasad V, Freitas H. 2009. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28: 142-149.
- Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E. 2009. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol. Biochem. 41: 154-162. https://doi.org/10.1016/j.soilbio.2008.10.010
- Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W. 2010. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J. Hazard. Mater. 181: 771-777. https://doi.org/10.1016/j.jhazmat.2010.05.080
- Abou-Shanab RA, Ghozlan H, Ghanem K, Moawad H. 2005. Behavior of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites. World J. Microbiol. Biotechnol. 21: 1095-1101. https://doi.org/10.1007/s11274-004-0005-6
- Li WC, Ye ZH, Wong MH. 2010. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326: 453-467. https://doi.org/10.1007/s11104-009-0025-y
- Ma Y, Prasad MNV, Rajkumar M, Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29: 248-258. https://doi.org/10.1016/j.biotechadv.2010.12.001
- Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, et al. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol. Biochem. 60: 182-194. https://doi.org/10.1016/j.soilbio.2013.01.012
- Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A. 2008. The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J. Microbiol. Biotechnol. 24: 253-262. https://doi.org/10.1007/s11274-007-9464-x
- Braud A, Jezequel K, Bazot S, Lebeau T. 2009. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74: 280-286. https://doi.org/10.1016/j.chemosphere.2008.09.013
- Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E. 2009. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J. Appl. Microbiol. 107: 1687-1696. https://doi.org/10.1111/j.1365-2672.2009.04355.x
- Dhal B, Thatoi H, Das N, Pandey BD. 2010. Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J. Chem. Technol. Biotechnol. 85: 1471-1479.
- Govarthanan M, Lee KJ, Cho M, Kim JS, Kamala-Kannan S, Oh BT. 2013. Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 90: 2267-2272. https://doi.org/10.1016/j.chemosphere.2012.10.038
- Seralathan K, Kui JL. 2008. Metal tolerance and antibiotic resistance of Bacillus species isolated from Sunchon Bay, South Korea. Biotechnology 7: 149-152. https://doi.org/10.3923/biotech.2008.149.152
- Sheng XF, He LY, Wang QY, Ye HS, Jiang CY. 2008. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J. Hazard. Mater. 155: 17-22. https://doi.org/10.1016/j.jhazmat.2007.10.107
- Teixeira C, Almeida CMR, Nunes da Silva M, Bordalo AA, Mucha AP. 2014. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium. Sci. Total Environ. 493: 757-765. https://doi.org/10.1016/j.scitotenv.2014.06.040
- Kumar KV, Singh N, Behl NH, Srivastava S. 2008. Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72: 678-683. https://doi.org/10.1016/j.chemosphere.2008.03.025
- Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin MA. 2011. Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011: 939161.
- Kumari B, Singh SN. 2011. Phytoremediation of metals from fly ash through bacterial augmentation. Ecotoxicology 20: 166-176. https://doi.org/10.1007/s10646-010-0568-y
- Burd GI, Dixon DG, Glick BR. 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64: 3663-3668.
Cited by
- Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species vol.227, pp.None, 2018, https://doi.org/10.1016/j.chemosphere.2019.04.093
- Isolation and Identification of Lead (Pb) Solubilizing Bacteria from Automobile Waste and Its Potential for Recovery of Lead from End of Life Waste Batteries vol.36, pp.10, 2019, https://doi.org/10.1080/01490451.2019.1654044
- Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review vol.254, pp.None, 2018, https://doi.org/10.1016/j.jenvman.2019.109779
- Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China vol.27, pp.5, 2020, https://doi.org/10.1007/s11356-019-07264-7
- Jute: A Potential Candidate for Phytoremediation of Metals—A Review vol.9, pp.2, 2018, https://doi.org/10.3390/plants9020258
- Lead soaps formation and biodiversity in a XVIII Century wax seal coloured with minium vol.22, pp.4, 2018, https://doi.org/10.1111/1462-2920.14735
- Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil vol.27, pp.24, 2018, https://doi.org/10.1007/s11356-020-09233-x
- A new assay of bacterial selection with Pb reveals an unexpected effect of Pb on bacterial behavior: implications for remediation vol.18, pp.3, 2018, https://doi.org/10.1007/s10311-020-00986-y
- Antioxidant Activity, Whitening and Anti-wrinkle Effects of Leaf and Seed Extracts of Brassica juncea L. Czern. vol.18, pp.3, 2018, https://doi.org/10.20402/ajbc.2020.0038
- Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions vol.192, pp.11, 2018, https://doi.org/10.1007/s10661-020-08655-x
- Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria vol.205, pp.None, 2018, https://doi.org/10.1016/j.ecoenv.2020.111333
- Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle vol.10, pp.2, 2018, https://doi.org/10.3390/biology10020158
- Removal of lead ions in an aqueous solution by living and modified Aspergillus niger vol.93, pp.6, 2018, https://doi.org/10.1002/wer.1472
- Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis vol.774, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.145002
- Characterization and bioremediation potential of native heavy-metal tolerant bacteria isolated from rat-hole coal mine environment vol.203, pp.5, 2018, https://doi.org/10.1007/s00203-021-02218-5
- Heavy metals bio-removal potential of the isolated Klebsiella sp TIU20 strain which improves growth of economic crop plant (Vigna radiata L.) under heavy metals stress by exhibiting plant growth promo vol.38, pp.None, 2021, https://doi.org/10.1016/j.bcab.2021.102204
- Role of Ovalbumin/β-Cyclodextrin in Improving Structural and Gelling Properties of Culter alburnus Myofibrillar Proteins during Frozen Storage vol.11, pp.24, 2018, https://doi.org/10.3390/app112411815