DOI QR코드

DOI QR Code

Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity

  • Kim, Hyung Sik (Department of Biological Sciences, Sungkyunkwan University) ;
  • Park, Min Young (Department of Biological Sciences, Sungkyunkwan University) ;
  • Lee, Sung Kyun (Department of Biological Sciences, Sungkyunkwan University) ;
  • Park, Joon Seong (Department of Hematology-Oncology, Ajou University School of Medicine) ;
  • Lee, Ha Young (Department of Biological Sciences, Sungkyunkwan University) ;
  • Bae, Yoe-Sik (Department of Biological Sciences, Sungkyunkwan University)
  • 투고 : 2018.04.13
  • 심사 : 2018.07.03
  • 발행 : 2018.08.31

초록

Emergency granulopoiesis is a very important strategy to supply efficient neutrophil number in response to infection. However, molecular mechanism involved in this process remains unclear. Here, we found that administration of WKYMVm, an immune modulating peptide, to septic mice strongly increased neutrophil number through augmented emergency granulopoiesis. WKYMVm-induced emergency granulopoiesis was blocked not only by a formyl peptide receptor 2 (FPR2) antagonist (WRW4), but also by FPR2 deficiency. As progenitors of neutrophils, $Lin^-c-kit^+Sca-1^-$ cells expressed FPR2. WKYMVm-induced emergency granulopoiesis was also blocked by a phospholipase C inhibitor (U-73122). These results suggest that WKYMVm can stimulate emergency granulopoiesis via FPR2 and phospholipase C enzymatic activity.

키워드

참고문헌

  1. Smith JA (1994) Neutrophils, host defense, and inflammation: a double-edged sword. J Leukoc Biol 56, 672-686 https://doi.org/10.1002/jlb.56.6.672
  2. Kruger P, Saffarzadeh M, Weber ANR et al (2015) Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog 11, e1004651 https://doi.org/10.1371/journal.ppat.1004651
  3. DeCoursey TE (2016) The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 273, 194-218 https://doi.org/10.1111/imr.12437
  4. Iwasaki H, Akashi K (2007) Myeloid lineage commitment from the hematopoietic stem cell. Immunity 22, 726-740
  5. Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2, 640-653 https://doi.org/10.1002/wsbm.86
  6. Manz MG, Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14, 302-314 https://doi.org/10.1038/nri3660
  7. Seo JK, Choi SY, Kim Y et al (1997) A peptide with unique receptor specificity: stimulation of phosphoinositide hydrolysis and induction of superoxide generation in human neutrophils. J Immunol 158, 1895-1901
  8. Bae YS, Ju SA, Kim JY et al (1999) Trp-Lys-Tyr-Met-Val-D-Met stimulates superoxide generation and killing of Staphylococcus aureus via phospholipase D activation in human monocytes. J Leukoc Biol 65, 241-248 https://doi.org/10.1002/jlb.65.2.241
  9. Bae YS, Kim Y, Kim JH et al (2000) Independent functioning of cytosolic phospholipase A2 and phospholipase D1 in Trp-Lys-Tyr-Met-Val-D-Met-induced superoxide generation in human monocytes. J Immunol 164, 4089-4096 https://doi.org/10.4049/jimmunol.164.8.4089
  10. Schepetkin IA, Kirpotina LN, Tian J et al (2008) Identification of novel formyl peptide receptor-like 1 agonists that induce macrophage tumor necrosis factor ${\alpha}$ Production. Mol Pharmacol 74, 392-402 https://doi.org/10.1124/mol.108.046946
  11. Le Y, Gong W, Li B et al (1999) Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation. J Immunol 163, 6777-6784
  12. Bae YS, Song JY, Kim Y et al (2003) Differential activation of formyl peptide receptor signaling by peptide ligands. Mol Pharmacol 64, 841-847 https://doi.org/10.1124/mol.64.4.841
  13. Kim SD, Kim YK, Lee HY et al (2010) The agonists of formyl peptide receptors prevent development of severe sepsis after microbial infection. J Immunol 185, 4302-4310 https://doi.org/10.4049/jimmunol.1001310
  14. Noh DY, Shin SH, Rhee SG (1995) Phosphoinositidespecific phospholipase C and mitogenic signaling. Biochim Biophys Acta 1242, 99-113
  15. Suh PG, Park JI, Manzoli L et al (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41, 415-434 https://doi.org/10.5483/BMBRep.2008.41.6.415
  16. Lattanzio R, Piantelli M, Falasca M (2013) Role of phospholipase C in cell invasion and metastasis. Adv Biol Regul 53, 309-318 https://doi.org/10.1016/j.jbior.2013.07.006
  17. Cheng M, Bhujwalla ZM, Glunde K (2016) Targeting phospholipid Metabolism in cancer. Front Oncol 6, 266
  18. Sonego F, Castanheira FV, Ferreira RG et al (2016) Paradoxical roles of the neutrophil in sepsis: protective and deleterious. Front Immunol 7, 155
  19. Bae YS, Lee HY, Jo EJ et al (2004) Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J Immunol 173, 607-614 https://doi.org/10.4049/jimmunol.173.1.607
  20. Kwak HJ, Liu P, Bajrami B et al (2015) Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity 42, 159-171 https://doi.org/10.1016/j.immuni.2014.12.017
  21. Ye RD, Boulay F, Wang JM et al (2009) International union of basic and clinical pharmacology. LXXIII. nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 61, 119-161 https://doi.org/10.1124/pr.109.001578
  22. Lee HY, Lee M, Bae YS (2017) Formyl peptide receptors in cellular differentiation and inflammatory diseases. J Cell Biochem 6, 1300-1307
  23. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70, 281-312 https://doi.org/10.1146/annurev.biochem.70.1.281
  24. Zhang S, Coso OA, Collins R, Gutkind JS, Simonds WF (1996) A C-terminal mutant of the G protein beta subunit deficient in the activation of phospholipase C-beta. J Biol Chem 271, 20208-20212 https://doi.org/10.1074/jbc.271.33.20208
  25. Park MY, Kim HS et al (2017) FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through Formyl peptide receptor 2. Sci Rep 7, 15575 https://doi.org/10.1038/s41598-017-15586-0
  26. Lee SK, Kim SD, Kook MS et al (2015) Phospholipase D2 drives mortality in sepsis by inhibiting neutrophil extracellular trap formation and down-regulating CXCR2. J Exp Med 212, 1381-1390 https://doi.org/10.1084/jem.20141813
  27. Kim SD, Lee HY, Shim JW et al (2011) Activation of CXCR2 by extracellular matrix degradation product acetylated Pro-Gly-Pro has therapeutic effects against sepsis. Am J Respir Crit Care Med 184, 243-251 https://doi.org/10.1164/rccm.201101-0004OC