DOI QR코드

DOI QR Code

Intergranular Corrosion of Stainless Steel

스테인리스강 입계부식

  • Kim, Hong Pyo (Nuclear Material Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong Jin (Nuclear Material Research Division, Korea Atomic Energy Research Institute)
  • Received : 2018.08.13
  • Accepted : 2018.08.23
  • Published : 2018.08.30

Abstract

Stainless steel can be classified into three categories depending on the microstructure as austenitic stainless steel, ferritic stainless steel and martensitic stainless steel. Generally, stainless steel is extremely resistant to corrosion as the name implies. However, under specific environments, susceptibility to localized corrosion such as pitting, intergranular corrosion and stress corrosion cracking increases. This paper reviewed the state of arts on intergranular corrosion mechanisms, countermeasures on intergranular corrosion and intergranular corrosion test methods. Intergranular corrosion is mostly related with chromium depletion at the grain boundary and sometimes with segregation of electroactive elements in solution annealed stainless steel. Countermeasures on intergranular corrosion include avoiding chromium depletion by heat treatment and the addition of alloying elements. Sensitization evaluation of stainless steel was performed either through acid immersion test or electrochemical test. The methods were standardized in (Japanese Industrial Standards). Even though are useful in evaluating the degree of sensitization for industrial purpose but do not provide detailed information about sensitization mechanism, cause and chromium profile.

스테인리스강은 오스테니틱 스테인리스강, 페리틱 스테인리스강과 마르텐시틱 스테인리스강으로 대별할 수 있으며, 이 고도의 안전성이 요구되는 산업계에서 스테인리스강의 입계부식, 응력부식균열과 핏팅과 같은 국부적 부식이 발생하면 대형사고로 귀결될 수 있다. 스테인리스강의 입계부식 기구와 대책 그리고 입계부식측정 방법에 대한 기술 소개를 하여 산업현장에서 흔히 접하는 스테인리스강 예민화에 대한 길잡이가 되도록 하고, 이 분야를 전문적으로 연구하려는 연구자에게 예민화 전반을 이해하는데 활용되도록 하였다.

Keywords

References

  1. Harold M. Cobb, The history of stainless steel, p. 11, ASM International(R) (2010).
  2. D. L. OLSON, Prediction of austenitic weld metal microstructure and properties, Welding research supplement, 281-s (1985).
  3. L. Ernest and C. L. Briant, Metall. Trans. A, 15A, 794 (1984).
  4. J. S. Armijo, Corrosion, 24, 24 (1968). https://doi.org/10.5006/0010-9312-24.1.24
  5. L. Tan, R. E. Stoller, K. G. Field, Y. Yang, H. Nam, D. Morgan, B. D. Wirth, M. N. Gussev, and J. T. Busby, JOM, 68, 517 (2016). https://doi.org/10.1007/s11837-015-1753-5
  6. R. L. Plauta, C. Herrerab, D. M. Escribaa, P. R. Riosc, and A. F. Padilhaa, Mater. Res., 10, 453 (2007). https://doi.org/10.1590/S1516-14392007000400021
  7. A. J. Sedriks, Corrosion of stainless steel, 2nd ed., p. 45 John Wiley & Sons, New York, (1996).
  8. P. I. Williams and R. G. Faukner, J. Mater. Sci., 22, 3537 (1987). https://doi.org/10.1007/BF01161455
  9. R. L. Cowan and C. S. Tedmon, Advances in Corrosion Science and Technology, 3, 293 (1973).
  10. ASTM A262-15, Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels.
  11. ASTM A763-15, Standard practices for detecting susceptibility to intergranular attack in ferritic stainless steels.
  12. ASTM G28-02, Standard test methods for detecting susceptibility to intergranular corrosion in wrought, nickel-rich, chromium-bearing alloys.
  13. ASTM G108-94, Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI Type 304 and 304L stainless steels.
  14. JIS G 0580 2003, Electrochemical reactivation test method of stainless steel.