DOI QR코드

DOI QR Code

Breast Ultrasound Computer-Aided Diagnosis: Analysis of Types of Errors

유방 초음파 컴퓨터 진단: 오류 유형 분석

  • Jeong, Min Kyung (Department of Radiology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kang, Bong Joo (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Eunjeong (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Sung Hun (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • 정민경 (가톨릭대학교 의과대학 성빈센트병원 영상의학과) ;
  • 강봉주 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 김은정 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 김성헌 (가톨릭대학교 의과대학 서울성모병원 영상의학과)
  • Received : 2017.11.22
  • Accepted : 2018.05.31
  • Published : 2018.09.01

Abstract

Purpose: The aim of this study was to evaluate the diagnostic performance of breast ultrasound (US) computer-aided diagnosis (CAD) to distinguish between benign and malignant lesions and analyze features of lesions interpreted with errors retrospectively. Materials and Methods: Three hundred and sixteen women with 375 breast lesions were enrolled. We assessed the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Additionally, we evaluated the causes and patterns of the misinterpretation in the false positive and negative groups. Results: The accuracy, sensitivity, specificity, PPV, and NPV of breast US-CAD were 80.3%, 83.3%, 79.8%, 37.7%, and 97.0%, respectively. There were 8 false negative lesions that were oval in shape and in parallel orientation. There were 66 false positive lesions. The greatest number of errors entailed inappropriate demarcation due to heterogeneous echogenicity, etc. The second exhibited suspicious features with good demarcation and description but were confirmed as benign histologically. The third entailed a benign lesion with suspicious features, such as abscesses. The smallest portion with good demarcations and descriptions indicating benign status exhibited possible malignancy as a final conclusion. Conclusion: Breast US-CAD is expected to be helpful in avoiding unnecessary biopsies due to its high NPV. Therefore, operators need to know the characteristics of lesions prone to misinterpretation.

목적: 이 연구의 목적은 유방 초음파 컴퓨터 진단(computer-aided diagnosis; 이하 CAD)의 양성과 악성을 구별하는 진단능을 알아보고 이 때 발생한 오류 유형을 후향적으로 분석하는데 있다. 대상 및 방법: 316명의 여성에게서 발견된 375개의 병변을 대상으로 정확도, 민감도, 특이도, 양성예측치, 음성예측치를 계산하였다. 위양성 및 위음성 그룹에서 진단 오류의 원인과 유형을 분석하였다. 결과: 유방 초음파 CAD의 정확도, 민감도, 특이도, 양성예측치, 음성예측치는 각각 80.3%, 83.3%, 79.8%, 37.7%, 97.0%였다. 8개의 위음성 병변은 모두 타원형과 피부 평형 방향이었다. 위양성 병변은 66개였고 4가지 유형으로 분류되었다. 가장 많은 수의 첫 번째 유형은 불균인한 에코발생도 등으로 인해 병변의 경계를 틀리게 그려져서 발생하였다. 두 번째 유형은 병변의 경계를 맞게 그리고 악성을 시사하는 적절한 기술을 했지만 병리에서 양성이 나왔다. 세 번째 유형은 농양 등 양성 병변이 악성처럼 보였다. 가장 적은 수의 마지막 네 번째 유형은 병변의 경계를 맞게 그리고 양성을 시사하는 적절한 기술을 했지만 CAD가 최종 진단을 악성으로 내렸다. 결론: 유방 초음파 CAD의 높은 음성예측치는 불필요한 조직검사를 감소시킬 것으로 기대된다. 따라서, 유방 초음파를 시행하는 의사는 CAD의 진단 오류 특징에 대해서 이해할 필요가 있다.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI)

References

  1. Wang X, Guo Y, Wang Y. Automatic detection of regions of interest in breast ultrasound images based on local phase information. Biomed Mater Eng 2015;26 Suppl 1:S1265-S1273
  2. Jung KW, Won YJ, Oh CM, Kong HJ, Lee DH, Lee KH. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2014. Cancer Res Treat 2017;49:292-305 https://doi.org/10.4143/crt.2017.118
  3. Chabi ML, Borget I, Ardiles R, Aboud G, Boussouar S, Vilar V, et al. Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist's experience. Acad Radiol 2012;19:311-319 https://doi.org/10.1016/j.acra.2011.10.023
  4. Kim K, Song MK, Kim EK, Yoon JH. Clinical application of SDetect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist. Ultrasonography 2017;36:3-9 https://doi.org/10.14366/usg.16012
  5. Chen DR, Chien CL, Kuo YF. Computer-aided assessment of tumor grade for breast cancer in ultrasound images. Comput Math Methods Med 2015;2015:914091
  6. Moon WK, Huang YS, Lo CM, Huang CS, Bae MS, Kim WH, et al. Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features. Med Phys 2015;42:3024-3035 https://doi.org/10.1118/1.4921123
  7. Song SE, Seo BK, Cho KR, Woo OH, Son GS, Kim C, et al. Computer-aided detection (CAD) system for breast MRI in assessment of local tumor extent, nodal status, and multifocality of invasive breast cancers: preliminary study. Cancer Imaging 2015;15:1 https://doi.org/10.1186/s40644-015-0036-2
  8. Shan J, Alam SK, Garra B, Zhang Y, Ahmed T. Computer-aided diagnosis for breast ultrasound using computerized BIRADS features and machine learning methods. Ultrasound Med Biol 2016;42:980-988 https://doi.org/10.1016/j.ultrasmedbio.2015.11.016
  9. Cho E, Kim EK, Song MK, Yoon JH. Application of computeraided diagnosis on breast ultrasonography: evaluation of diagnostic performances and agreement of radiologists according to different levels of experience. J Ultrasound Med 2018;37:209-216 https://doi.org/10.1002/jum.14332
  10. Choi JH, Kang BJ, Baek JE, Lee HS, Kim SH. Application of computer-aided diagnosis in breast ultrasound interpretation: improvements in diagnostic performance according to reader experience. Ultrasonography 2017;37:217-225
  11. Lee SE, Moon JE, Rho YH, Kim EK, Yoon JH. Which supplementary imaging modality should be used for breast ultrasonography? Comparison of the diagnostic performance of elastography and computer-aided diagnosis. Ultrasonography 2017;36:153-159 https://doi.org/10.14366/usg.16033
  12. Wang Y, Jiang S, Wang H, Guo YH, Liu B, Hou Y, et al. CAD algorithms for solid breast masses discrimination: evaluation of the accuracy and interobserver variability. Ultrasound Med Biol 2010;36:1273-1281 https://doi.org/10.1016/j.ultrasmedbio.2010.05.010
  13. Dromain C, Boyer B, Ferre R, Canale S, Delaloge S, Balleyguier C. Computed-aided diagnosis (CAD) in the detection of breast cancer. Eur J Radiol 2013;82:417-423 https://doi.org/10.1016/j.ejrad.2012.03.005
  14. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977:33;159-174 https://doi.org/10.2307/2529310
  15. Tan T, Platel B, Twellmann T, van Schie G, Mus R, Grivegnee A, et al. Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound. Acad Radiol 2013;20:1381-1388 https://doi.org/10.1016/j.acra.2013.07.013
  16. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med 2015;175:1828-1837 https://doi.org/10.1001/jamainternmed.2015.5231
  17. Sahiner B, Chan HP, Roubidoux MA, Hadjiiski LM, Helvie MA, Paramagul C, et al. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology 2007;242:716-724 https://doi.org/10.1148/radiol.2423051464
  18. Yoo JL, Woo OH, Kim YK, Cho KR, Yong HS, Seo BK, et al. Can MR imaging contribute in characterizing well-circumscribed breast carcinomas? Radiographics 2010;30:1689-1702 https://doi.org/10.1148/rg.306105511