DOI QR코드

DOI QR Code

2017 Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology

  • Kim, Ji-hoon (Department of Radiology, Seoul National University Hospital) ;
  • Baek, Jung Hwan (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lim, Hyun Kyung (Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine) ;
  • Ahn, Hye Shin (Department of Radiology and Thyroid Center, Chung-Ang University Hospital, Chung-Ang University College of Medicine) ;
  • Baek, Seon Mi (Department of Radiology, Haeundae Sharing and Happiness Hospital) ;
  • Choi, Yoon Jung (Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University) ;
  • Choi, Young Jun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Chung, Sae Rom (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Ha, Eun Ju (Department of Radiology, Ajou University School of Medicine) ;
  • Hahn, Soo Yeon (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University, School of Medicine) ;
  • Jung, So Lyung (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Dae Sik (Department of Radiolgy, Incheon Medical Center) ;
  • Kim, Soo Jin (Department of Radiology, Human Medical Imaging and Intervention Center) ;
  • Kim, Yeo Koon (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Lee, Chang Yoon (Department of Radiology, Research Institute and Hospital, National Cancer Center) ;
  • Lee, Jeong Hyun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lee, Kwang Hwi (Department of Radiology, Sheikh Khalifa Specialty Hospital) ;
  • Lee, Young Hen (Department of Radiology, Ansan Hospital, Korea University College of Medicine) ;
  • Park, Jeong Seon (Department of Radiology, Hanyang University College of Medicine, Hanyang University Hospital) ;
  • Park, Hyesun (Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School) ;
  • Shin, Jung Hee (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University, School of Medicine) ;
  • Suh, Chong Hyun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Sung, Jin Yong (Department of Radiology and Thyroid Center, Daerim St. Mary's Hospital) ;
  • Sim, Jung Suk (Department of Radiology, Withsim Clinic) ;
  • Youn, Inyoung (Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University) ;
  • Choi, Miyoung (Division for Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency) ;
  • Na, Dong Gyu (Department of Radiology, Human Medical Imaging and Intervention Center) ;
  • Guideline Committee for the Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology (Korean Society of Radiology)
  • Received : 2018.05.04
  • Accepted : 2018.05.10
  • Published : 2018.08.01

Abstract

Thermal ablation using radiofrequency is a new, minimally invasive modality employed as an alternative to surgery in patients with benign thyroid nodules and recurrent thyroid cancers. The Task Force Committee of the Korean Society of Thyroid Radiology (KSThR) developed recommendations for the optimal use of radiofrequency ablation for thyroid tumors in 2012. As new meaningful evidences have accumulated, KSThR decided to revise the guidelines. The revised guideline is based on a comprehensive analysis of the current literature and expert consensus.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI)

References

  1. Na DG, Lee JH, Jung SL, Kim JH, Sung JY, Shin JH, et al.; Korean Society of Thyroid Radiology (KSThR); Korean Society of Radiology. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J Radiol 2012;13:117-125 https://doi.org/10.3348/kjr.2012.13.2.117
  2. Bandeira-Echtler E, Bergerhoff K, Richter B. Levothyroxine or minimally invasive therapies for benign thyroid nodules. Cochrane Database Syst Rev 2014:CD004098
  3. Mauri G, Cova L, Monaco CG, Sconfienza LM, Corbetta S, Benedini S, et al. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int J Hyperthermia 2016 Nov 15 [Epub ahead of print]. https://doi.org/10.1080/02656736.2016.1244707
  4. Deandrea M, Limone P, Basso E, Mormile A, Ragazzoni F, Gamarra E, et al. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules. Ultrasound Med Biol 2008;34:784-791 https://doi.org/10.1016/j.ultrasmedbio.2007.10.018
  5. Jeong WK, Baek JH, Rhim H, Kim YS, Kwak MS, Jeong HJ, et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur Radiol 2008;18:1244-1250 https://doi.org/10.1007/s00330-008-0880-6
  6. Kim YS, Rhim H, Tae K, Park DW, Kim ST. Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience. Thyroid 2006;16:361-367 https://doi.org/10.1089/thy.2006.16.361
  7. Spiezia S, Garberoglio R, Milone F, Ramundo V, Caiazzo C, Assanti AP, et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid 2009;19:219-225 https://doi.org/10.1089/thy.2008.0202
  8. Baek JH, Jeong HJ, Kim YS, Kwak MS, Lee D. Radiofrequency ablation for an autonomously functioning thyroid nodule. Thyroid 2008;18:675-676 https://doi.org/10.1089/thy.2007.0274
  9. Baek JH, Kim YS, Lee D, Huh JY, Lee JH. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. AJR Am J Roentgenol 2010;194:1137-1142 https://doi.org/10.2214/AJR.09.3372
  10. Lee JH, Kim YS, Lee D, Choi H, Yoo H, Baek JH. Radiofrequency ablation (RFA) of benign thyroid nodules in patients with incompletely resolved clinical problems after ethanol ablation (EA). World J Surg 2010;34:1488-1493 https://doi.org/10.1007/s00268-010-0565-6
  11. Sung JY, Kim YS, Choi H, Lee JH, Baek JH. Optimum firstline treatment technique for benign cystic thyroid nodules: ethanol ablation or radiofrequency ablation? AJR Am J Roentgenol 2011;196:W210-W214 https://doi.org/10.2214/AJR.10.5172
  12. Jung SL, Baek JH, Lee JH, Shong YK, Sung JY, Kim KS, et al. Efficacy and safety of radiofrequency ablation for benign thyroid nodules: a prospective multicenter study. Korean J Radiol 2018;19:167-174 https://doi.org/10.3348/kjr.2018.19.1.167
  13. Baek JH, Na DG, Lee JH, Jung SL, Sung JY, Sim JS. Korean society of thyroid radiology recommendations for radiofrequency ablation of thyroid nodules. Korean Society of Thyroid Radiology, 2009. Available at: http://thyroidimaging.kr/. Accessed June 1, 2016
  14. Choi SJ, Jeong WK, Jo AJ, Choi JA, Kim MJ, Lee M, et al. Methodology for developing evidence-based clinical imaging guidelines: joint recommendations by Korean Society of Radiology and National Evidence-based Healthcare Collaborating Agency. Korean J Radiol 2017;18:208-216 https://doi.org/10.3348/kjr.2017.18.1.208
  15. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al.; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-536 https://doi.org/10.7326/0003-4819-155-8-201110180-00009
  16. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133 https://doi.org/10.1089/thy.2015.0020
  17. Andrews J, Guyatt G, Oxman AD, Alderson P, Dahm P, Falck-Ytter Y, et al. GRADE guidelines: 14. Going from evidence to recommendations: the significance and presentation of recommendations. J Clin Epidemiol 2013;66:719-725 https://doi.org/10.1016/j.jclinepi.2012.03.013
  18. Jang SW, Baek JH, Kim JK, Sung JY, Choi H, Lim HK, et al. How to manage the patients with unsatisfactory results after ethanol ablation for thyroid nodules: role of radiofrequency ablation. Eur J Radiol 2012;81:905-910 https://doi.org/10.1016/j.ejrad.2011.02.039
  19. Park HS, Baek JH, Na DG. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int J Hyperthermia 2017;33:953-954
  20. Eng OS, Potdevin L, Davidov T, Lu SE, Chen C, Trooskin SZ. Does nodule size predict compressive symptoms in patients with thyroid nodules? Gland Surg 2014;3:232-236
  21. Banks CA, Ayers CM, Hornig JD, Lentsch EJ, Day TA, Nguyen SA, et al. Thyroid disease and compressive symptoms. Laryngoscope 2012;122:13-16 https://doi.org/10.1002/lary.22366
  22. Committee. IPA. Ultrasound-guided percutaneous radiofrequency ablation for benign thyroid nodules. Interventional procedures guidance [IPG562]. Web site. https://www.nice.org.uk/Guidance/IPG562. Published June, 2016. Accessed Dec 1, 2016
  23. Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee YH, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2016;17:370-395 https://doi.org/10.3348/kjr.2016.17.3.370
  24. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedus L, et al.; AACE/ACE/AME Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules - 2016 update. Endocr Pract 2016;22:622-639
  25. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid 2009;19:1159-1165 https://doi.org/10.1089/thy.2009.0274
  26. Na DG, Baek JH, Jung SL, Kim JH, Sung JY, Kim KS, et al. Core needle biopsy of the thyroid: 2016 consensus statement and recommendations from Korean Society of Thyroid Radiology. Korean J Radiol 2017;18:217-237 https://doi.org/10.3348/kjr.2017.18.1.217
  27. Hong MJ, Na DG, Baek JH, Sung JY, Kim JH. Cytologyultrasonography risk-stratification scoring system based on fine-needle aspiration cytology and the Korean-thyroid imaging reporting and data system. Thyroid 2017;27:953-959 https://doi.org/10.1089/thy.2016.0603
  28. McCoy KL, Jabbour N, Ogilvie JB, Ohori NP, Carty SE, Yim JH. The incidence of cancer and rate of false-negative cytology in thyroid nodules greater than or equal to 4 cm in size. Surgery 2007;142:837-844; discussion 844.e1-3 https://doi.org/10.1016/j.surg.2007.08.012
  29. Mehanna R, Murphy M, McCarthy J, O'Leary G, Tuthill A, Murphy MS, et al. False negatives in thyroid cytology: impact of large nodule size and follicular variant of papillary carcinoma. Laryngoscope 2013;123:1305-1309 https://doi.org/10.1002/lary.23861
  30. Agcaoglu O, Aksakal N, Ozcinar B, Sarici IS, Ercan G, Kucukyilmaz M, et al. Factors that affect the false-negative outcomes of fine-needle aspiration biopsy in thyroid nodules. Int J Endocrinol 2013;2013:126084
  31. Giles WH, Maclellan RA, Gawande AA, Ruan DT, Alexander EK, Moore FD Jr, et al. False negative cytology in large thyroid nodules. Ann Surg Oncol 2015;22:152-157 https://doi.org/10.1245/s10434-014-3952-7
  32. Shin JJ, Caragacianu D, Randolph GW. Impact of thyroid nodule size on prevalence and post-test probability of malignancy: a systematic review. Laryngoscope 2015;125:263-272 https://doi.org/10.1002/lary.24784
  33. Koo DH, Song K, Kwon H, Bae DS, Kim JH, Min HS, et al. Does tumor size influence the diagnostic accuracy of ultrasound-guided fine-needle aspiration cytology for thyroid nodules? Int J Endocrinol 2016;2016:3803647
  34. Cavallo A, Johnson DN, White MG, Siddiqui S, Antic T, Mathew M, et al. Thyroid nodule size at ultrasound as a predictor of malignancy and final pathologic size. Thyroid 2017;27:641-650 https://doi.org/10.1089/thy.2016.0336
  35. Magister MJ, Chaikhoutdinov I, Schaefer E, Williams N, Saunders B, Goldenberg D. Association of thyroid nodule size and bethesda class with rate of malignant disease. JAMA Otolaryngol Head Neck Surg 2015;141:1089-1095 https://doi.org/10.1001/jamaoto.2015.1451
  36. Kamran SC, Marqusee E, Kim MI, Frates MC, Ritner J, Peters H, et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab 2013;98:564-570 https://doi.org/10.1210/jc.2012-2968
  37. Rossi ED, Bizzarro T, Fadda G, Pontecorvi A, Bernet V, Nassar A. The cytological diagnosis of a 'benign thyroid lesion': is it a real safe diagnosis for the patient? Cytopathology 2016;27:168-175 https://doi.org/10.1111/cyt.12267
  38. Kulstad R. Do all thyroid nodules> 4 cm need to be removed? An evaluation of thyroid fine-needle aspiration biopsy in large thyroid nodules. Endocr Pract 2016;22:791-798 https://doi.org/10.4158/EP151150.OR
  39. Shi H, Bobanga I, McHenry CR. Are large thyroid nodules classified as benign on fine needle aspiration more likely to harbor cancer? Am J Surg 2017;213:464-466 https://doi.org/10.1016/j.amjsurg.2016.10.028
  40. Erdogan MF, Kamel N, Aras D, Akdogan A, Bas˛kal N, Erdogan G. Value of re-aspirations in benign nodular thyroid disease. Thyroid 1998;8:1087-1090 https://doi.org/10.1089/thy.1998.8.1087
  41. Chehade JM, Silverberg AB, Kim J, Case C, Mooradian AD. Role of repeated fine-needle aspiration of thyroid nodules with benign cytologic features. Endocr Pract 2001;7:237-243 https://doi.org/10.4158/EP.7.4.237
  42. Orlandi A, Puscar A, Capriata E, Fideleff H. Repeated fineneedle aspiration of the thyroid in benign nodular thyroid disease: critical evaluation of long-term follow-up. Thyroid 2005;15:274-278 https://doi.org/10.1089/thy.2005.15.274
  43. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al.; Thyroid Study Group, Korean Society of Neuro- and Head and Neck Radiology. Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. Radiology 2008;247:762-770 https://doi.org/10.1148/radiol.2473070944
  44. Bonavita JA, Mayo J, Babb J, Bennett G, Oweity T, Macari M, et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone? AJR Am J Roentgenol 2009;193:207-213 https://doi.org/10.2214/AJR.08.1820
  45. Kim JY, Jung SL, Kim MK, Kim TJ, Byun JY. Differentiation of benign and malignant thyroid nodules based on the proportion of sponge-like areas on ultrasonography: imagingpathologic correlation. Ultrasonography 2015;34:304-311 https://doi.org/10.14366/usg.15016
  46. Ahuja A, Chick W, King W, Metreweli C. Clinical significance of the comet-tail artifact in thyroid ultrasound. J Clin Ultrasound 1996;24:129-133 https://doi.org/10.1002/(SICI)1097-0096(199603)24:3<129::AID-JCU4>3.0.CO;2-J
  47. Beland MD, Kwon L, Delellis RA, Cronan JJ, Grant EG. Nonshadowing echogenic foci in thyroid nodules: are certain appearances enough to avoid thyroid biopsy? J Ultrasound Med 2011;30:753-760 https://doi.org/10.7863/jum.2011.30.6.753
  48. Malhi H, Beland MD, Cen SY, Allgood E, Daley K, Martin SE, et al. Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. AJR Am J Roentgenol 2014;203:1310-1316 https://doi.org/10.2214/AJR.13.11934
  49. Lee ES, Kim JH, Na DG, Paeng JC, Min HS, Choi SH, et al. Hyperfunction thyroid nodules: their risk for becoming or being associated with thyroid cancers. Korean J Radiol 2013;14:643-652 https://doi.org/10.3348/kjr.2013.14.4.643
  50. Yoon RG, Baek JH, Lee JH, Choi YJ, Hong MJ, Song DE, et al. Diagnosis of thyroid follicular neoplasm: fine-needle aspiration versus core-needle biopsy. Thyroid 2014;24:1612-1617 https://doi.org/10.1089/thy.2014.0140
  51. Lee SH, Park GS, Jung SL, Kim MH, Bae JS, Lim DJ, et al. Core-needle biopsy for the preoperative diagnosis of follicular neoplasm in thyroid nodule screening: a validation study. Pathol Res Pract 2016;212:44-50 https://doi.org/10.1016/j.prp.2015.11.009
  52. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016 American Thyroid Association Guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 2016;26:1343-1421 https://doi.org/10.1089/thy.2016.0229
  53. Sung JY, Baek JH, Jung SL, Kim JH, Kim KS, Lee D, et al. Radiofrequency ablation for autonomously functioning thyroid nodules: a multicenter study. Thyroid 2015;25:112-117 https://doi.org/10.1089/thy.2014.0100
  54. Baek JH, Moon WJ, Kim YS, Lee JH, Lee D. Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules. World J Surg 2009;33:1971-1977 https://doi.org/10.1007/s00268-009-0130-3
  55. Faggiano A, Ramundo V, Assanti AP, Fonderico F, Macchia PE, Misso C, et al. Thyroid nodules treated with percutaneous radiofrequency thermal ablation: a comparative study. J Clin Endocrinol Metab 2012;97:4439-4445 https://doi.org/10.1210/jc.2012-2251
  56. Bernardi S, Stacul F, Michelli A, Giudici F, Zuolo G, de Manzini N, et al. 12-month efficacy of a single radiofrequency ablation on autonomously functioning thyroid nodules. Endocrine 2017;57:402-408 https://doi.org/10.1007/s12020-016-1174-4
  57. Bernardi S, Dobrinja C, Fabris B, Bazzocchi G, Sabato N, Ulcigrai V, et al. Radiofrequency ablation compared to surgery for the treatment of benign thyroid nodules. Int J Endocrinol 2014;2014:934595
  58. Che Y, Jin S, Shi C, Wang L, Zhang X, Li Y, et al. Treatment of benign thyroid nodules: comparison of surgery with radiofrequency ablation. AJNR Am J Neuroradiol 2015;36:1321-1325 https://doi.org/10.3174/ajnr.A4276
  59. Ugurlu MU, Uprak K, Akpinar IN, Attaallah W, Yegen C, Gulluoglu BM. Radiofrequency ablation of benign symptomatic thyroid nodules: prospective safety and efficacy study. World J Surg 2015;39:961-968 https://doi.org/10.1007/s00268-014-2896-1
  60. Garberoglio R, Aliberti C, Appetecchia M, Attard M, Boccuzzi G, Boraso F, et al. Radiofrequency ablation for thyroid nodules: which indications? The first Italian opinion statement. J Ultrasound 2015;18:423-430 https://doi.org/10.1007/s40477-015-0169-y
  61. Sandrock D, Olbricht T, Emrich D, Benker G, Reinwein D. Long-term follow-up in patients with autonomous thyroid adenoma. Acta Endocrinol (Copenh) 1993;128:51-55 https://doi.org/10.1530/acta.0.1280051
  62. Samaan NA, Schultz PN, Hickey RC, Goepfert H, Haynie TP, Johnston DA, et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab 1992;75:714-720
  63. Dupuy DE, Monchik JM, Decrea C, Pisharodi L. Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery 2001;130:971-977 https://doi.org/10.1067/msy.2001.118708
  64. Baek JH, Kim YS, Sung JY, Choi H, Lee JH. Locoregional control of metastatic well-differentiated thyroid cancer by ultrasound-guided radiofrequency ablation. AJR Am J Roentgenol 2011;197:W331-W336 https://doi.org/10.2214/AJR.10.5345
  65. Guenette JP, Monchik JM, Dupuy DE. Image-guided ablation of postsurgical locoregional recurrence of biopsy-proven well-differentiated thyroid carcinoma. J Vasc Interv Radiol 2013;24:672-679 https://doi.org/10.1016/j.jvir.2013.02.001
  66. Long B, Li L, Yao L, Chen S, Yi H, Ye X, et al. Combined use of radioiodine therapy and radiofrequency ablation in treating postsurgical thyroid remnant of differentiated thyroid carcinoma. J Cancer Res Ther 2015;11 Suppl:C244-C247 https://doi.org/10.4103/0973-1482.170530
  67. Monchik JM, Donatini G, Iannuccilli J, Dupuy DE. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg 2006;244:296-304 https://doi.org/10.1097/01.sla.0000217685.85467.2d
  68. Park KW, Shin JH, Han BK, Ko EY, Chung JH. Inoperable symptomatic recurrent thyroid cancers: preliminary result of radiofrequency ablation. Ann Surg Oncol 2011;18:2564-2568 https://doi.org/10.1245/s10434-011-1619-1
  69. Zhao Q, Tian G, Kong D, Jiang T. Meta-analysis of radiofrequency ablation for treating the local recurrence of thyroid cancers. J Endocrinol Invest 2016;39:909-916 https://doi.org/10.1007/s40618-016-0450-8
  70. Suh CH, Baek JH, Choi YJ, Lee JH. Efficacy and safety of radiofrequency and ethanol ablation for treating locally recurrent thyroid cancer: a systematic review and metaanalysis. Thyroid 2016;26:420-428 https://doi.org/10.1089/thy.2015.0545
  71. Wang L, Ge M, Xu D, Chen L, Qian C, Shi K, et al. Ultrasonography-guided percutaneous radiofrequency ablation for cervical lymph node metastasis from thyroid carcinoma. J Cancer Res Ther 2014;10 Suppl:C144-C149 https://doi.org/10.4103/0973-1482.145844
  72. Lee SJ, Jung SL, Kim BS, Ahn KJ, Choi HS, Lim DJ, et al. Radiofrequency ablation to treat loco-regional recurrence of well-differentiated thyroid carcinoma. Korean J Radiol 2014;15:817-826 https://doi.org/10.3348/kjr.2014.15.6.817
  73. Lim HK, Baek JH, Lee JH, Kim WB, Kim TY, Shong YK, et al. Efficacy and safety of radiofrequency ablation for treating locoregional recurrence from papillary thyroid cancer. Eur Radiol 2015;25:163-170 https://doi.org/10.1007/s00330-014-3405-5
  74. Kim JH, Yoo WS, Park YJ, Park DJ, Yun TJ, Choi SH, et al. Efficacy and safety of radiofrequency ablation for treatment of locally recurrent thyroid cancers smaller than 2 cm. Radiology 2015;276:909-918 https://doi.org/10.1148/radiol.15140079
  75. Zhang M, Luo Y, Zhang Y, Tang J. Efficacy and safety of ultrasound-guided radiofrequency ablation for treating lowrisk papillary thyroid microcarcinoma: a prospective study. Thyroid 2016;26:1581-1587 https://doi.org/10.1089/thy.2015.0471
  76. Kim JH, Baek JH, Sung JY, Min HS, Kim KW, Hah JH, et al. Radiofrequency ablation of low-risk small papillary thyroidcarcinoma: preliminary results for patients ineligible for surgery. Int J Hyperthermia 2016 Sep 20 [Epub ahead of print]. https://doi.org/10.1080/02656736.2016.1230893
  77. Papini E, Guglielmi R, Gharib H, Misischi I, Graziano F, Chianelli M, et al. Ultrasound-guided laser ablation of incidental papillary thyroid microcarcinoma: a potential therapeutic approach in patients at surgical risk. Thyroid 2011;21:917-920 https://doi.org/10.1089/thy.2010.0447
  78. Valcavi R, Piana S, Bortolan GS, Lai R, Barbieri V, Negro R. Ultrasound-guided percutaneous laser ablation of papillary thyroid microcarcinoma: a feasibility study on three cases with pathological and immunohistochemical evaluation. Thyroid 2013;23:1578-1582 https://doi.org/10.1089/thy.2013.0279
  79. Yue W, Wang S, Yu S, Wang B. Ultrasound-guided percutaneous microwave ablation of solitary T1N0M0 papillary thyroid microcarcinoma: initial experience. Int J Hyperthermia 2014;30:150-157 https://doi.org/10.3109/02656736.2014.885590
  80. Lim HK, Baek SM, Baek JH. Us-guided RFA for primary thyroid cancer: efficacy and safety of long-term follow-up in a large population. CIRSE (Cardiovascular and Interventional Radiological Society of Europe); 2017 September 16-20;Copenhagen, Denmark
  81. Cakir B, Topaloglu O, Gul K, Agac T, Aydin C, Dirikoc A, et al. Ultrasound-guided percutaneous laser ablation treatment in inoperable aggressive course anaplastic thyroid carcinoma: the introduction of a novel alternative palliative therapy--second experience in the literature. J Endocrinol Invest 2007;30:624-625 https://doi.org/10.1007/BF03346359
  82. Miyabayashi C, Ooiwa A, Katakura M, Ando T, Hasumoto Y, Terao Y, et al. [A successful treatment of percutaneous radio frequency ablation for advanced thyroid cancer]. Gan To Kagaku Ryoho 2005;32:1875-1877
  83. Pacella CM, Bizzarri G, Spiezia S, Bianchini A, Guglielmi R, Crescenzi A, et al. Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology 2004;232:272-280 https://doi.org/10.1148/radiol.2321021368
  84. Owen RP, Silver CE, Ravikumar TS, Brook A, Bello J, Breining D. Techniques for radiofrequency ablation of head and neck tumors. Arch Otolaryngol Head Neck Surg 2004;130:52-56 https://doi.org/10.1001/archotol.130.1.52
  85. Gilliland FD, Hunt WC, Morris DM, Key CR. Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973-1991. Cancer 1997;79:564-573 https://doi.org/10.1002/(SICI)1097-0142(19970201)79:3<564::AID-CNCR20>3.0.CO;2-0
  86. Goldstein RE, Netterville JL, Burkey B, Johnson JE. Implications of follicular neoplasms, atypia, and lesions suspicious for malignancy diagnosed by fine-needle aspiration of thyroid nodules. Ann Surg 2002;235:656-662; discussion 662-664 https://doi.org/10.1097/00000658-200205000-00007
  87. Dosen D, Turic M, Smalcelj J, Janusic R, Grgic MP, Separovic V. The value of frozen section in intraoperative surgical management of thyroid follicular carcinoma. Head Neck 2003;25:521-528 https://doi.org/10.1002/hed.10251
  88. Dabelic N, Matesa N, Matesa-Anic D, Kusic Z. Malignancy risk assessment in adenomatoid nodules and suspicious follicular lesions of the thyroid obtained by fine needle aspiration cytology. Coll Antropol 2010;34:349-354
  89. Deveci MS, Deveci G, LiVolsi VA, Baloch ZW. Fine-needle aspiration of follicular lesions of the thyroid. Diagnosis and follow-Up. Cytojournal 2006;3:9 https://doi.org/10.1186/1742-6413-3-9
  90. Song YS, Kim JH, Na DG, Min HS, Won JK, Yun TJ, et al. Ultrasonographic differentiation between nodular hyperplasia and neoplastic follicular-patterned lesions of the thyroid gland. Ultrasound Med Biol 2016;42:1816-1824 https://doi.org/10.1016/j.ultrasmedbio.2016.03.025
  91. Choi YJ, Yun JS, Kim DH. Clinical and ultrasound features of cytology diagnosed follicular neoplasm. Endocr J 2009;56:383-389 https://doi.org/10.1507/endocrj.K08E-310
  92. Baek JH, Lee JH, Valcavi R, Pacella CM, Rhim H, Na DG. Thermal ablation for benign thyroid nodules: radiofrequency and laser. Korean J Radiol 2011;12:525-540 https://doi.org/10.3348/kjr.2011.12.5.525
  93. Chung SR, Suh CH, Baek JH, Park HS, Choi YJ, Lee JH. Safety of radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: a systematic review and metaanalysis. Int J Hyperthermia 2017;33:920-930
  94. Sim JS, Baek JH, Lee J, Cho W, Jung SI. Radiofrequency ablation of benign thyroid nodules: depicting early sign of regrowth by calculating vital volume. Int J Hyperthermia 2017;33:905-910
  95. Ha SM, Sung JY, Baek JH, Na DG, Kim JH, Yoo H, et al. Radiofrequency ablation of small follicular neoplasms: initial clinical outcomes. Int J Hyperthermia 2017;33:931-937
  96. Dobrinja C, Bernardi S, Fabris B, Eramo R, Makovac P, Bazzocchi G, et al. Surgical and pathological changes after radiofrequency ablation of thyroid nodules. Int J Endocrinol 2015;2015:576576
  97. Hahn SY, Shin JH, Oh YL. What is the ideal core number for ultrasonography-guided thyroid biopsy of cytologically inconclusive nodules? AJNR Am J Neuroradiol 2017;38:777-781 https://doi.org/10.3174/ajnr.A5075
  98. Kwak JY, Koo H, Youk JH, Kim MJ, Moon HJ, Son EJ, et al. Value of US correlation of a thyroid nodule with initially benign cytologic results. Radiology 2010;254:292-300 https://doi.org/10.1148/radiol.2541090460
  99. Ahn HS, Kim SJ, Park SH, Seo M. Radiofrequency ablation of benign thyroid nodules: evaluation of the treatment efficacy using ultrasonography. Ultrasonography 2016;35:244-252 https://doi.org/10.14366/usg.15083
  100. Baek JH, Lee JH, Sung JY, Bae JI, Kim KT, Sim J, et al.; Korean Society of Thyroid Radiology. Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: a multicenter study. Radiology 2012;262:335-342 https://doi.org/10.1148/radiol.11110416
  101. Hong MJ, Baek JH, Choi YJ, Lee JH, Lim HK, Shong YK, et al. Radiofrequency ablation is a thyroid function-preserving treatment for patients with bilateral benign thyroid nodules. J Vasc Interv Radiol 2015;26:55-61 https://doi.org/10.1016/j.jvir.2014.09.015
  102. Ha EJ, Baek JH, Lee JH, Sung JY, Lee D, Kim JK, et al. Radiofrequency ablation of benign thyroid nodules does not affect thyroid function in patients with previous lobectomy. Thyroid 2013;23:289-293 https://doi.org/10.1089/thy.2012.0171
  103. Torres MR, Nobrega Neto SH, Rosas RJ, Martins AL, Ramos AL, da Cruz TR. Thyroglobulin in the washout fluid of lymph-node biopsy: what is its role in the follow-up of differentiated thyroid carcinoma? Thyroid 2014;24:7-18 https://doi.org/10.1089/thy.2013.0244
  104. Rosario PW, Carvalho M, Mourao GF, Calsolari MR. Comparison of antithyroglobulin antibody concentrations before and after ablation with 131i as a predictor of structural disease in differentiated thyroid carcinoma patients with undetectable basal thyroglobulin and negative neck ultrasonography. Thyroid 2016;26:525-531 https://doi.org/10.1089/thy.2015.0445
  105. Jeon SJ, Kim E, Park JS, Son KR, Baek JH, Kim YS, et al. Diagnostic benefit of thyroglobulin measurement in fineneedle aspiration for diagnosing metastatic cervical lymph nodes from papillary thyroid cancer: correlations with US features. Korean J Radiol 2009;10:106-111 https://doi.org/10.3348/kjr.2009.10.2.106
  106. Kwok A, Faigel DO. Management of anticoagulation before and after gastrointestinal endoscopy. Am J Gastroenterol 2009;104:3085-3097; quiz 3098 https://doi.org/10.1038/ajg.2009.469
  107. Baek JH, Ha EJ, Choi YJ, Sung JY, Kim JK, Shong YK. Radiofrequency versus ethanol ablation for treating predominantly cystic thyroid nodules: a randomized clinical trial. Korean J Radiol 2015;16:1332-1340 https://doi.org/10.3348/kjr.2015.16.6.1332
  108. Park HS, Baek JH, Park AW, Chung SR, Choi YJ, Lee JH. Thyroid radiofrequency ablation: updates on innovative devices and techniques. Korean J Radiol 2017;18:615-623 https://doi.org/10.3348/kjr.2017.18.4.615
  109. Bernardi S, Lanzilotti V, Papa G, Panizzo N, Dobrinja C, Fabris B, et al. Full-thickness skin burn caused by radiofrequency ablation of a benign thyroid nodule. Thyroid 2016;26:183-184 https://doi.org/10.1089/thy.2015.0453
  110. Huh JY, Baek JH, Choi H, Kim JK, Lee JH. Symptomatic benign thyroid nodules: efficacy of additional radiofrequency ablation treatment session--prospective randomized study. Radiology 2012;263:909-916 https://doi.org/10.1148/radiol.12111300
  111. Ha EJ, Baek JH, Lee JH. Moving-shot versus fixed electrode techniques for radiofrequency ablation: comparison in an exvivo bovine liver tissue model. Korean J Radiol 2014;15:836-843 https://doi.org/10.3348/kjr.2014.15.6.836
  112. Ha EJ, Baek JH, Lee JH. Ultrasonography-based thyroidal and perithyroidal anatomy and its clinical significance. Korean J Radiol 2015;16:749-766 https://doi.org/10.3348/kjr.2015.16.4.749
  113. Shin JH, Baek JH, Ha EJ, Lee JH. Radiofrequency ablation of thyroid nodules: basic principles and clinical application. Int J Endocrinol 2012;2012:919650
  114. Laeseke PF, Sampson LA, Brace CL, Winter TC 3rd, Fine JP, Lee FT Jr. Unintended thermal injuries from radiofrequency ablation: protection with 5% dextrose in water. AJR Am J Roentgenol 2006;186(5 Suppl):S249-S254 https://doi.org/10.2214/AJR.04.1240
  115. Kohlhase KD, Korkusuz Y, Groner D, Erbelding C, Happel C, Luboldt W, et al. Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up. Int J Hyperthermia 2016;32:511-516 https://doi.org/10.3109/02656736.2016.1149234
  116. Lim HK, Lee JH, Ha EJ, Sung JY, Kim JK, Baek JH. Radiofrequency ablation of benign non-functioning thyroid nodules: 4-year follow-up results for 111 patients. Eur Radiol 2013;23:1044-1049 https://doi.org/10.1007/s00330-012-2671-3
  117. Cesareo R, Pasqualini V, Simeoni C, Sacchi M, Saralli E, Campagna G, et al. Prospective study of effectiveness of ultrasound-guided radiofrequency ablation versus control group in patients affected by benign thyroid nodules. J Clin Endocrinol Metab 2015;100:460-466 https://doi.org/10.1210/jc.2014-2186
  118. Baek JH. Radiofrequency ablation of thyroid and parathyroid nodules. In: Clark T, Sabharwal T, eds. Interventional radiology techniques in ablation, 1st ed. London: Springer 2013:53-72
  119. Brunese L, Romeo A, Iorio S, Napolitano G, Fucili S, Zeppa P, et al. Thyroid B-flow twinkling sign: a new feature of papillary cancer. Eur J Endocrinol 2008;159:447-451 https://doi.org/10.1530/EJE-07-0891
  120. Zhao CK, Xu HX, Lu F, Sun LP, He YP, Guo LH, et al. Factors associated with initial incomplete ablation for benign thyroid nodules after radiofrequency ablation: first results of CEUS evaluation. Clin Hemorheol Microcirc 2017;65:393-405 https://doi.org/10.3233/CH-16208
  121. Tang X, Cui D, Chi J, Wang Z, Wang T, Zhai B, et al. Evaluation of the safety and efficacy of radiofrequency ablation for treating benign thyroid nodules. J Cancer 2017;8:754-760 https://doi.org/10.7150/jca.17655
  122. Spencer CA. Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab 2011;96:3615-3627 https://doi.org/10.1210/jc.2011-1740
  123. Papini E, Bizzarri G, Bianchini A, Valle D, Misischi I, Guglielmi R, et al. Percutaneous ultrasound-guided laser ablation is effective for treating selected nodal metastases in papillary thyroid cancer. J Clin Endocrinol Metab 2013;98:E92-E97 https://doi.org/10.1210/jc.2012-2991
  124. Zhou W, Zhang L, Zhan W, Jiang S, Zhu Y, Xu S. Percutaneous laser ablation for treatment of locally recurrent papillary thyroid carcinoma <15 mm. Clin Radiol 2016;71:1233-1239 https://doi.org/10.1016/j.crad.2016.07.010
  125. Aysan E, Idiz UO, Akbulut H, Elmas L. Single-session radiofrequency ablation on benign thyroid nodules: a prospective single center study: radiofrequency ablation on thyroid. Langenbecks Arch Surg 2016;401:357-363 https://doi.org/10.1007/s00423-016-1408-1
  126. Baek JH, Jeong HJ, Kim YS, Kwak MS, Rhim HC, Chang SH. Percutaneous radiofrequency ablation for benign nodules of the thyroid gland. J Korean Radiol Soc 2005;52:379-384 https://doi.org/10.3348/jkrs.2005.52.6.379
  127. Li XL, Xu HX, Lu F, Yue WW, Sun LP, Bo XW, et al. Treatment efficacy and safety of ultrasound-guided percutaneous bipolar radiofrequency ablation for benign thyroid nodules. Br J Radiol 2016;89:20150858 https://doi.org/10.1259/bjr.20150858
  128. Sung JY, Baek JH, Kim KS, Lee D, Yoo H, Kim JK, et al. Single-session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study. Radiology 2013;269:293-300 https://doi.org/10.1148/radiol.13122134
  129. Kim TH, Kim SM, Jung AL, Moon SK, Yang DH, Park CM, et al. Efficacy and safety of radiofrequency ablation performed by an endocrinologist for benign thyroid nodules. Int J Thyroidol 2015;8:183-186 https://doi.org/10.11106/ijt.2015.8.2.183
  130. Valcavi R, Tsamatropoulos P. Health-related quality of life after percutaneous radiofrequency ablation of cold, solid, benign thyroid nodules: a 2-year follow-up study in 40 patients. Endocr Pract 2015;21:887-896 https://doi.org/10.4158/EP15676.OR
  131. Yue WW, Wang SR, Lu F, Sun LP, Guo LH, Zhang YL, et al. Radiofrequency ablation vs. microwave ablation for patients with benign thyroid nodules: a propensity score matching study. Endocrine 2017;55:485-495 https://doi.org/10.1007/s12020-016-1173-5
  132. Deandrea M, Sung JY, Limone P, Mormile A, Garino F, Ragazzoni F, et al. Efficacy and safety of radiofrequency ablation versus observation for nonfunctioning benign thyroid nodules: a randomized controlled international collaborative trial. Thyroid 2015;25:890-896 https://doi.org/10.1089/thy.2015.0133
  133. Suh CH, Baek JH, Ha EJ, Choi YJ, Lee JH, Kim JK, et al. Ethanol ablation of predominantly cystic thyroid nodules: evaluation of recurrence rate and factors related to recurrence. Clin Radiol 2015;70:42-47 https://doi.org/10.1016/j.crad.2014.09.008
  134. Park HS, Baek JH, Choi YJ, Lee JH. Innovative techniques for image-guided ablation of benign thyroid nodules: combined ethanol and radiofrequency ablation. Korean J Radiol 2017;18:461-469 https://doi.org/10.3348/kjr.2017.18.3.461
  135. Kim DW. Sonography-guided ethanol ablation of a remnant solid component after radio-frequency ablation of benign solid thyroid nodules: a preliminary study. AJNR Am J Neuroradiol 2012;33:1139-1143 https://doi.org/10.3174/ajnr.A2904
  136. Yoon HM, Baek JH, Lee JH, Ha EJ, Kim JK, Yoon JH, et al. Combination therapy consisting of ethanol and radiofrequency ablation for predominantly cystic thyroid nodules. AJNR Am J Neuroradiol 2014;35:582-586 https://doi.org/10.3174/ajnr.A3701
  137. Ha EJ, Baek JH, Kim KW, Pyo J, Lee JH, Baek SH, et al. Comparative efficacy of radiofrequency and laser ablation for the treatment of benign thyroid nodules: systematic review including traditional pooling and bayesian network metaanalysis. J Clin Endocrinol Metab 2015;100:1903-1911 https://doi.org/10.1210/jc.2014-4077
  138. Fuller CW, Nguyen SA, Lohia S, Gillespie MB. Radiofrequency ablation for treatment of benign thyroid nodules: systematic review. Laryngoscope 2014;124:346-353 https://doi.org/10.1002/lary.24406
  139. Chen F, Tian G, Kong D, Zhong L, Jiang T. Radiofrequency ablation for treatment of benign thyroid nodules: a PRISMAcompliant systematic review and meta-analysis of outcomes. Medicine (Baltimore) 2016;95:e4659 https://doi.org/10.1097/MD.0000000000004659
  140. Hegedus L. Clinical practice. The thyroid nodule. N Engl J Med 2004;351:1764-1771 https://doi.org/10.1056/NEJMcp031436
  141. Dossing H, Bennedbaek FN, Bonnema SJ, Grupe P, Hegedus L. Randomized prospective study comparing a single radioiodine dose and a single laser therapy session in autonomously functioning thyroid nodules. Eur J Endocrinol 2007;157:95-100 https://doi.org/10.1530/EJE-07-0094
  142. Chianelli M, Bizzarri G, Todino V, Misischi I, Bianchini A, Graziano F, et al. Laser ablation and 131-iodine: a 24-month pilot study of combined treatment for large toxic nodular goiter. J Clin Endocrinol Metab 2014;99:E1283-E1286 https://doi.org/10.1210/jc.2013-2967
  143. Ha EJ, Baek JH, Lee JH. The efficacy and complications of radiofrequency ablation of thyroid nodules. Curr Opin Endocrinol Diabetes Obes 2011;18:310-314 https://doi.org/10.1097/MED.0b013e32834a9168
  144. Kim C, Lee JH, Choi YJ, Kim WB, Sung TY, Baek JH. Complications encountered in ultrasonography-guided radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers. Eur Radiol 2017;27:3128-3137 https://doi.org/10.1007/s00330-016-4690-y
  145. Wang JF, Wu T, Hu KP, Xu W, Zheng BW, Tong G, et al. Complications following radiofrequency ablation of benign thyroid nodules: a systematic review. Chin Med J (Engl) 2017;130:1361-1370 https://doi.org/10.4103/0366-6999.206347
  146. Ha EJ, Baek JH, Lee JH, Kim JK, Shong YK. Clinical significance of vagus nerve variation in radiofrequency ablation of thyroid nodules. Eur Radiol 2011;21:2151-2157 https://doi.org/10.1007/s00330-011-2167-6
  147. Shin JE, Baek JH, Ha EJ, Choi YJ, Choi WJ, Lee JH. Ultrasound features of middle cervical sympathetic ganglion. Clin J Pain 2015;31:909-913 https://doi.org/10.1097/AJP.0000000000000184
  148. Bernardi S, Stacul F, Zecchin M, Dobrinja C, Zanconati F, Fabris B. Radiofrequency ablation for benign thyroid nodules. J Endocrinol Invest 2016;39:1003-1013 https://doi.org/10.1007/s40618-016-0469-x
  149. Livraghi T, Solbiati L, Meloni MF, Gazelle GS, Halpern EF, Goldberg SN. Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology 2003;226:441-451 https://doi.org/10.1148/radiol.2262012198
  150. Mulier S, Mulier P, Ni Y, Miao Y, Dupas B, Marchal G, et al. Complications of radiofrequency coagulation of liver tumours. Br J Surg 2002;89:1206-1222 https://doi.org/10.1046/j.1365-2168.2002.02168.x
  151. Korkusuz Y, Erbelding C, Kohlhase K, Luboldt W, Happel C, Grunwald F. Bipolar radiofrequency ablation of benign symptomatic thyroid nodules: initial experience. Rofo 2016;188:671-675
  152. Branovan DI, Fridman M, Lushchyk M, Drozd V, Krasko O, Nedzvedz O, et al. Morphological changes induced by bipolar radiofrequency ablation in thyroid nodules - a preclinical ex vivo investigation. Eur Endocrinol 2016;12:85-88 https://doi.org/10.17925/EE.2016.12.02.85
  153. Yue WW, Li XL, Xu HX, Lu F, Sun LP, Guo LH, et al. Quality of life and cost-effectiveness of radiofrequency ablation versus open surgery for benign thyroid nodules: a retrospective cohort study. Sci Rep 2016;6:37838 https://doi.org/10.1038/srep37838

Cited by

  1. Changes in serum thyroglobulin and antithyroglobulin shortly following high-intensity focused ablation of benign thyroid nodules in patients with positive antithyroglobulin status vol.35, pp.1, 2018, https://doi.org/10.1080/02656736.2018.1516302
  2. RE: 2017 Thyroid Radiofrequency Ablation Guideline: The Korean Society of Thyroid Radiology vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1196
  3. Comparative study on operative trauma between microwave ablation and surgical treatment for papillary thyroid microcarcinoma vol.6, pp.15, 2018, https://doi.org/10.12998/wjcc.v6.i15.936
  4. Active Surveillance of Papillary Thyroid Microcarcinoma: Where Do We Stand? vol.8, pp.6, 2019, https://doi.org/10.1159/000503064
  5. US-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: Efficacy and Safety in a Large Population vol.20, pp.12, 2018, https://doi.org/10.3348/kjr.2019.0192
  6. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  7. High intensity focused ultrasound (HIFU) ablation of benign thyroid nodule is safe and efficacious in patients who continue taking an anti-coagulation or anti-platelet agent in the treatment period vol.36, pp.1, 2018, https://doi.org/10.1080/02656736.2018.1548034
  8. Comparison of efficacy and complications between radiofrequency ablation and repeat surgery in the treatment of locally recurrent thyroid cancers: a single-center propensity score matching study vol.36, pp.1, 2018, https://doi.org/10.1080/02656736.2019.1571248
  9. Minimally-invasive treatments for benign thyroid nodules: a Delphi-based consensus statement from the Italian minimally-invasive treatments of the thyroid (MITT) group vol.36, pp.1, 2018, https://doi.org/10.1080/02656736.2019.1575482
  10. A comparative study of short-term efficacy and safety for thyroid micropapillary carcinoma patients after microwave ablation or surgery vol.36, pp.1, 2018, https://doi.org/10.1080/02656736.2019.1626492
  11. Safety and efficacy of thermal ablation (radiofrequency and laser): should we treat all types of thyroid nodules? vol.36, pp.1, 2018, https://doi.org/10.1080/02656736.2019.1627432
  12. Lever-elevating vs. liquid-isolating maneuvers during microwave ablation of high-risk benign thyroid nodules: a prospective single-center study vol.36, pp.1, 2018, https://doi.org/10.1080/02656736.2019.1690711
  13. Efficacy and safety of radiofrequency, microwave and laser ablation for treating papillary thyroid microcarcinoma: a systematic review and meta-analysis vol.36, pp.1, 2018, https://doi.org/10.1080/02656736.2019.1700559
  14. Percutaneous laser ablation for benign and malignant thyroid diseases vol.38, pp.1, 2019, https://doi.org/10.14366/usg.18034
  15. Efficacy of radiofrequency ablation in autonomous functioning thyroid nodules. A systematic review and meta-analysis vol.20, pp.1, 2018, https://doi.org/10.1007/s11154-019-09487-y
  16. Laser and radiofrequency ablations for benign and malignant thyroid tumors vol.36, pp.2, 2018, https://doi.org/10.1080/02656736.2019.1622795
  17. Preliminary report of microwave ablation for the primary papillary thyroid microcarcinoma: a large-cohort of 185 patients feasibility study vol.64, pp.1, 2018, https://doi.org/10.1007/s12020-019-01868-2
  18. Comparison between radioiodine therapy and single‐session radiofrequency ablation of autonomously functioning thyroid nodules: A retrospective study vol.90, pp.4, 2019, https://doi.org/10.1111/cen.13938
  19. Summary of the 2017 thyroid radiofrequency ablation guideline and comparison with the 2012 guideline vol.38, pp.2, 2018, https://doi.org/10.14366/usg.18044
  20. Image-Guided Thyroid Ablation: Proposal for Standardization of Terminology and Reporting Criteria vol.29, pp.5, 2018, https://doi.org/10.1089/thy.2018.0604
  21. Long-Term Outcomes Following Thermal Ablation of Benign Thyroid Nodules as an Alternative to Surgery: The Importance of Controlling Regrowth vol.34, pp.2, 2019, https://doi.org/10.3803/enm.2019.34.2.117
  22. High-intensity focused ultrasound (HIFU) for benign thyroid nodules: 2-year follow-up results vol.65, pp.2, 2018, https://doi.org/10.1007/s12020-019-01909-w
  23. Medullary thyroid carcinoma treated with percutaneous ultrasound-guided radiofrequency ablation vol.65, pp.3, 2018, https://doi.org/10.1007/s12020-019-01995-w
  24. Longer-term outcomes of radiofrequency ablation for locally recurrent papillary thyroid cancer vol.29, pp.9, 2019, https://doi.org/10.1007/s00330-019-06063-5
  25. Response: Long-Term Outcomes Following Thermal Ablation of Benign Thyroid Nodules as an Alternative to Surgery: The Importance of Controlling Regrowth (Endocrinol Metab 2019;34:117-23, Jung Suk Sim et vol.34, pp.3, 2019, https://doi.org/10.3803/enm.2019.34.3.325
  26. Minimally Invasive Radiofrequency Ablation for Large Thyroid Toxic Adenoma vol.46, pp.3, 2018, https://doi.org/10.2478/amb-2019-0031
  27. Ultrasound‐Guided Percutaneous Microwave Ablation for Substernal Goiter: Initial Experience vol.38, pp.11, 2019, https://doi.org/10.1002/jum.14992
  28. Thermal Ablation for Small Papillary Thyroid Cancer: A Systematic Review vol.29, pp.12, 2018, https://doi.org/10.1089/thy.2019.0377
  29. Revisiting Rupture of Benign Thyroid Nodules after Radiofrequency Ablation: Various Types and Imaging Features vol.34, pp.4, 2018, https://doi.org/10.3803/enm.2019.34.4.415
  30. Machine Learning Prediction of Radiofrequency Thermal Ablation Efficacy: A New Option to Optimize Thyroid Nodule Selection vol.9, pp.4, 2018, https://doi.org/10.1159/000504882
  31. European Thyroid Association Survey on Use of Minimally Invasive Techniques for Thyroid Nodules vol.9, pp.4, 2020, https://doi.org/10.1159/000506513
  32. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules vol.9, pp.4, 2020, https://doi.org/10.1159/000508484
  33. Placing Thermal Ablation for Benign Thyroid Nodules into Context vol.9, pp.4, 2020, https://doi.org/10.1159/000509310
  34. Guidelines for Transrectal Ultrasonography-Guided Prostate Biopsy: Korean Society of Urogenital Radiology Consensus Statement for Patient Preparation, Standard Technique, and Biopsy-Related Pain Manag vol.21, pp.4, 2018, https://doi.org/10.3348/kjr.2019.0576
  35. Feasibility of Adjustable Electrodes for Radiofrequency Ablation of Benign Thyroid Nodules vol.21, pp.3, 2020, https://doi.org/10.3348/kjr.2019.0724
  36. Twelve-Month Volume Reduction Ratio Predicts Regrowth and Time to Regrowth in Thyroid Nodules Submitted to Laser Ablation: A 5-Year Follow-Up Retrospective Study vol.21, pp.6, 2020, https://doi.org/10.3348/kjr.2019.0798
  37. Letter: Twelve-Month Volume Reduction Ratio Predicts Regrowth and Time to Regrowth in Thyroid Nodules Submitted to Laser Ablation: A 5-Year Follow-Up Retrospective Study vol.21, pp.None, 2018, https://doi.org/10.3348/kjr.2020.0647
  38. How to Monitor and Manage Nodule Regrowth after Thermal Ablation of Benign Thyroid Nodules vol.21, pp.None, 2018, https://doi.org/10.3348/kjr.2020.0690
  39. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  40. Thermal Ablation of Benign Thyroid Nodules and Papillary Thyroid Microcarcinoma vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.580431
  41. Radiofrequency Ablation of Parathyroid Adenomas: Safety and Efficacy in a Study of 10 Patients vol.24, pp.6, 2018, https://doi.org/10.4103/ijem.ijem_671_20
  42. The Clinical Application of Core-Needle Biopsy after Radiofrequency Ablation for Low-risk Papillary Thyroid Microcarcinoma: A Large Cohort of 202 Patients Study vol.11, pp.18, 2018, https://doi.org/10.7150/jca.42673
  43. Efficacy of thermal ablation in benign non-functioning solid thyroid nodule: A systematic review and meta-analysis vol.67, pp.1, 2020, https://doi.org/10.1007/s12020-019-02019-3
  44. Laser photocoagulation therapy for thyroid nodules: long-term outcome and predictors of efficacy vol.43, pp.1, 2018, https://doi.org/10.1007/s40618-019-01085-8
  45. Ultrasound-guided radiofrequency ablation for papillary thyroid microcarcinoma: a retrospective analysis of 198 patients vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2019.1708480
  46. Solid benign thyroid nodules (&gt;10 ml): a retrospective study on the efficacy and safety of sonographically guided ethanol ablation combined with radiofrequency ablation vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2020.1717647
  47. Identifying predictive factors for efficacy in high intensity focused ultrasound (HIFU) ablation of benign thyroid nodules - a retrospective analysis vol.37, pp.1, 2020, https://doi.org/10.1080/02656736.2020.1747646
  48. Efficacy and safety of ultrasonography-guided radiofrequency ablation for the treatment of T1bN0M0 papillary thyroid carcinoma: a retrospective study vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2020.1752945
  49. Comparison of ultrasound-guided thermal ablation and conventional thyroidectomy for benign thyroid nodules: a systematic review and meta-analysis vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2020.1758802
  50. Neural monitoring during ultrasound-guided radiofrequency ablation of thyroid nodules vol.37, pp.1, 2020, https://doi.org/10.1080/02656736.2020.1778109
  51. Vital volume increase versus clinical evaluation as the indication of additional radiofrequency ablation for benign thyroid nodule: a single center retrospective study vol.37, pp.1, 2020, https://doi.org/10.1080/02656736.2020.1778197
  52. CT-based quantitative evaluation of the efficacy after radiofrequency ablation in patients with benign thyroid nodules vol.37, pp.1, 2020, https://doi.org/10.1080/02656736.2020.1779358
  53. Efficacy and safety of single-session radiofrequency ablation for benign thyroid nodules of different sizes: a retrospective study vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2020.1782485
  54. Efficacy and safety of percutaneous ultrasound-guided microwave ablation for cervical metastatic lymph nodes from papillary thyroid carcinoma vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2020.1805128
  55. Residual vital ratio: predicting regrowth after radiofrequency ablation for benign thyroid nodules vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2020.1825835
  56. High-intensity focused ultrasound (HIFU) therapy for benign thyroid nodules: a 3-year retrospective multicenter follow-up study vol.37, pp.1, 2020, https://doi.org/10.1080/02656736.2020.1846795
  57. Inter-observer reliability in ultrasound measurement of benign thyroid nodules in the follow-up of radiofrequency ablation: a retrospective study vol.37, pp.1, 2018, https://doi.org/10.1080/02656736.2020.1849826
  58. A Novel Strategy for Single-Session Ultrasound-Guided Radiofrequency Ablation of Large Benign Thyroid Nodules: A Pilot Cohort Study vol.11, pp.None, 2018, https://doi.org/10.3389/fendo.2020.560508
  59. Novel Approaches for Treating Autonomously Functioning Thyroid Nodules vol.11, pp.None, 2018, https://doi.org/10.3389/fendo.2020.565371
  60. Idiopathic Hypoparathyroidism With Papillary Thyroid Carcinoma in a Young Male: A Rare Case Report vol.11, pp.None, 2018, https://doi.org/10.3389/fendo.2020.569308
  61. Radiofrequency ablation of thyroid nodules: “Good Clinical Practice Recommendations” for Austria : An interdisciplinary statement from the following professional associations: Austrian Thy vol.170, pp.1, 2018, https://doi.org/10.1007/s10354-019-0682-2
  62. Ultrasound-Guided Radiofrequency Ablation Versus Surgery for Low-Risk Papillary Thyroid Microcarcinoma: Results of Over 5 Years' Follow-Up vol.30, pp.3, 2020, https://doi.org/10.1089/thy.2019.0147
  63. Radiofrequency Ablation Systemization vol.7, pp.1, 2018, https://doi.org/10.1089/ve.2020.0175
  64. Reproducibility of Ablated Volume Measurement Is Higher with Contrast-Enhanced Ultrasound than with B-Mode Ultrasound after Benign Thyroid Nodule Radiofrequency Ablation—A Preliminary Study vol.9, pp.5, 2020, https://doi.org/10.3390/jcm9051504
  65. Thyroid Radiology Practice: Diagnosis and Interventional Treatment of Patients with Thyroid Nodules vol.81, pp.3, 2018, https://doi.org/10.3348/jksr.2020.81.3.530
  66. Laser Ablation Versus Radiofrequency Ablation for Benign Non-Functioning Thyroid Nodules: Six-Month Results of a Randomized, Parallel, Open-Label, Trial (LARA Trial) vol.30, pp.6, 2018, https://doi.org/10.1089/thy.2019.0660
  67. Long-Term Results of Thermal Ablation of Benign Thyroid Nodules: A Systematic Review and Meta-Analysis vol.35, pp.2, 2018, https://doi.org/10.3803/enm.2020.35.2.339
  68. Effectiveness of Injecting Cold 5% Dextrose into Patients with Nerve Damage Symptoms during Thyroid Radiofrequency Ablation vol.35, pp.2, 2020, https://doi.org/10.3803/enm.2020.35.2.407
  69. Radiofrequency Thermal Ablation of Benign Thyroid Nodules: The Correlation Between Ultrasound Nodule Characteristics and Results vol.27, pp.4, 2020, https://doi.org/10.1177/1553350620913134
  70. Diagnostic Performance of Four Ultrasound Risk Stratification Systems: A Systematic Review and Meta-Analysis vol.30, pp.8, 2018, https://doi.org/10.1089/thy.2019.0812
  71. Treating thyroid nodules by radiofrequency: is the delivered energy correlated with the volume reduction rate? A pilot study vol.69, pp.3, 2020, https://doi.org/10.1007/s12020-020-02275-8
  72. Radiofrequency for benign and malign thyroid lesions vol.6, pp.3, 2018, https://doi.org/10.1016/j.wjorl.2020.07.002
  73. Contemporary Thyroid Nodule Evaluation and Management vol.105, pp.9, 2018, https://doi.org/10.1210/clinem/dgaa322
  74. The Efficacy of Ultrasonography-Guided Radiofrequency Ablation in Patients With Benign Thyroid Goiters With a History of Unilateral Lobectomy vol.13, pp.3, 2018, https://doi.org/10.21053/ceo.2020.00164
  75. Thermal ablation for benign, non-functioning thyroid nodules: A clinical review focused on outcomes, technical remarks, and comparisons with surgery vol.39, pp.4, 2020, https://doi.org/10.1080/15368378.2020.1809448
  76. Clinical applications of Doppler ultrasonography for thyroid disease: consensus statement by the Korean Society of Thyroid Radiology vol.39, pp.4, 2018, https://doi.org/10.14366/usg.20072
  77. Ultrasound-Guided Percutaneous Ethanol Ablation for the Management of Recurrent Thyroid Cancer: Evaluation of Efficacy and Impact on Disease Course vol.13, pp.2, 2018, https://doi.org/10.11106/ijt.2020.13.2.128
  78. Long-Term Follow-Up Results of Ultrasound-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: More Than 5-Year Follow-Up for 84 Tumors vol.30, pp.12, 2018, https://doi.org/10.1089/thy.2020.0106
  79. Five-Year Results of Radiofrequency and Laser Ablation of Benign Thyroid Nodules: A Multicenter Study from the Italian Minimally Invasive Treatments of the Thyroid Group vol.30, pp.12, 2018, https://doi.org/10.1089/thy.2020.0202
  80. Nonsurgical Thermal Ablation of Thyroid Nodules: Not if, but Why, When, and How? vol.30, pp.12, 2018, https://doi.org/10.1089/thy.2020.0659
  81. Ultrasonographic characteristics of thyroid nodule rupture after microwave ablation : Three case reports vol.100, pp.9, 2018, https://doi.org/10.1097/md.0000000000025070
  82. European Thyroid Association and Cardiovascular and Interventional Radiological Society of Europe 2021 Clinical Practice Guideline for the Use of Minimally Invasive Treatments in Malignant Thyroid Les vol.10, pp.3, 2018, https://doi.org/10.1159/000516469
  83. Continuous, Large-Volume Hydrodissection to Protect Delicate Structures around the Thyroid throughout the Radiofrequency Ablation Procedure vol.10, pp.6, 2018, https://doi.org/10.1159/000519625
  84. Introducing “Recommendation and Guideline” of the Korean Journal of Radiology vol.22, pp.12, 2018, https://doi.org/10.3348/kjr.2021.0785
  85. Learning curve for radiofrequency ablation of benign thyroid nodules vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1871974
  86. Radiofrequency ablation versus reoperation for benign thyroid nodules that developed after previous thyroid surgery vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1873429
  87. Ultrasonography-guided radiofrequency ablation for the treatment of T2N0M0 papillary thyroid carcinoma: a preliminary study vol.38, pp.1, 2021, https://doi.org/10.1080/02656736.2021.1895332
  88. Radiofrequency ablation for treatment of thyroid follicular neoplasm with low SUV in PET/CT study vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1912414
  89. Radiofrequency ablation versus total thyroidectomy in patients with papillary thyroid microcarcinoma located in the isthmus: a retrospective cohort study vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1916625
  90. Is partial ablation appropriate for benign thyroid nodules? A retrospective study with long-term follow-up after microwave ablation vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1936217
  91. Ultrasound-guided thermal ablation for papillary thyroid microcarcinoma: a multicenter retrospective study vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1936218
  92. Efficacy and safety of single-session radiofrequency ablation for intrathoracic goiter: preliminary results and short-term evaluation vol.38, pp.1, 2021, https://doi.org/10.1080/02656736.2021.1942241
  93. Thyroid dysfunction following radiofrequency ablation for benign thyroid nodules: more likely to occur within one-week and in high-risk population vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1950849
  94. Long-term follow-up results of PTMC treated by ultrasound-guided radiofrequency ablation: a retrospective study vol.38, pp.1, 2021, https://doi.org/10.1080/02656736.2021.1963850
  95. Review of clinical tumor ablation advance in Asia vol.38, pp.1, 2021, https://doi.org/10.1080/02656736.2021.1983037
  96. A study on the efficacy of microwave ablation for benign thyroid nodules and related influencing factors vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1988151
  97. Learning curve analysis of radiofrequency ablation for benign thyroid nodules vol.38, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1993358
  98. Efficacy and Safety of Single-Session Radiofrequency Ablation in Treating Benign Thyroid Nodules: A Short-Term Prospective Cohort Study vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/7556393
  99. Long-Term Outcomes of Thermal Ablation for Benign Thyroid Nodules: The Issue of Regrowth vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9922509
  100. Comparative efficacy of different ultrasound-guided ablation for the treatment of benign thyroid nodules: Systematic review and network meta-analysis of randomized controlled trials vol.16, pp.1, 2018, https://doi.org/10.1371/journal.pone.0243864
  101. The Ablation of Thyroid Nodule’s Afferent Arteries Before Radiofrequency Ablation: Preliminary Data vol.11, pp.None, 2018, https://doi.org/10.3389/fendo.2020.565000
  102. Image-Guided Thermal Ablation as an Alternative to Surgery for Papillary Thyroid Microcarcinoma: Preliminary Results of an Italian Experience vol.11, pp.None, 2018, https://doi.org/10.3389/fendo.2020.575152
  103. Evaluation of Ultrasound-Guided Radiofrequency Ablation as a Treatment Option for Papillary Thyroid Microcarcinoma in the Isthmus: A Retrospective Study vol.11, pp.None, 2018, https://doi.org/10.3389/fendo.2020.599471
  104. Residual tumor and central lymph node metastasis after thermal ablation of papillary thyroid carcinoma: A case report and review of literature vol.9, pp.1, 2018, https://doi.org/10.12998/wjcc.v9.i1.252
  105. Radiofrequency ablation of benign thyroid nodules: recommendations from the Asian Conference on Tumor Ablation Task Force vol.40, pp.1, 2021, https://doi.org/10.14366/usg.20112
  106. Efficacy and Safety of Thermal Ablation for Solitary T1bN0M0 Papillary Thyroid Carcinoma: A Multicenter Study vol.106, pp.2, 2021, https://doi.org/10.1210/clinem/dgaa776
  107. Radiofrequency Ablation a Safe and Effective Treatment for Pediatric Benign Nodular Thyroid Goiter vol.9, pp.None, 2018, https://doi.org/10.3389/fped.2021.753343
  108. Radiofrequency Thermal Ablation for a Small Papillary Thyroid Carcinoma in a Patient Unfit for Surgery: A Case Report vol.12, pp.None, 2018, https://doi.org/10.3389/fendo.2021.566362
  109. A Propensity Score Matching Study Between Microwave Ablation and Radiofrequency Ablation in Terms of Safety and Efficacy for Benign Thyroid Nodules Treatment vol.12, pp.None, 2018, https://doi.org/10.3389/fendo.2021.584972
  110. Long-Term Results of Ultrasound-Guided Radiofrequency Ablation of Benign Thyroid Nodules: State of the Art and Future Perspectives-A Systematic Review vol.12, pp.None, 2018, https://doi.org/10.3389/fendo.2021.622996
  111. Radiofrequency Ablation for Cervical Metastatic Lymph Nodes in Children and Adolescents With Papillary Thyroid Carcinoma: A Preliminary Study vol.12, pp.None, 2021, https://doi.org/10.3389/fendo.2021.624054
  112. Predictor Analysis in Radiofrequency Ablation of Benign Thyroid Nodules: A Single Center Experience vol.12, pp.None, 2018, https://doi.org/10.3389/fendo.2021.638880
  113. The Importance of Nodule Size in the Management of Ruptured Thyroid Nodule After Radiofrequency Ablation: A Retrospective Study and Literature Review vol.12, pp.None, 2018, https://doi.org/10.3389/fendo.2021.776919
  114. RFA and benign thyroid nodules: Review of the current literature vol.6, pp.1, 2021, https://doi.org/10.1002/lio2.517
  115. Long-Term Follow-Up of Single-Fiber Multiple Low-Intensity Energy Laser Ablation Technique of Benign Thyroid Nodules vol.11, pp.None, 2018, https://doi.org/10.3389/fonc.2021.584265
  116. The Clinical Application of Radiofrequency Ablation in the Treatment of Primary Low-risk Papillary Thyroid Microcarcinoma vol.9, pp.1, 2018, https://doi.org/10.1007/s40136-020-00327-1
  117. Laryngeal Nerve and Airway Protection During Radiofrequency Ablation of Thyroid Nodules vol.8, pp.1, 2021, https://doi.org/10.1089/ve.2020.0203
  118. Efficacy of Ethanol Ablation for Benign Thyroid Cysts and Predominantly Cystic Nodules: A Systematic Review and Meta-Analysis vol.36, pp.1, 2018, https://doi.org/10.3803/enm.2020.833
  119. Microwave ablation of symptomatic benign thyroid nodules: Short‐ and long‐term effects on thyroid function tests, thyroglobulin and thyroid autoantibodies vol.94, pp.4, 2018, https://doi.org/10.1111/cen.14348
  120. Thyroid scintigraphy in the era of fine‐needle aspiration cytology vol.94, pp.4, 2018, https://doi.org/10.1111/cen.14379
  121. Clinical practice guidelines for radiofrequency ablation of benign thyroid nodules: a systematic review vol.40, pp.2, 2021, https://doi.org/10.14366/usg.20015
  122. Technique and Procedural Aspects of Radiofrequency Ablation of Thyroid Nodules vol.9, pp.2, 2021, https://doi.org/10.1007/s40136-020-00321-7
  123. Treatment Efficacy of Radiofrequency Ablation for Recurrent Tumor at the Central Compartment After Hemithyroidectomy vol.216, pp.6, 2018, https://doi.org/10.2214/ajr.20.23434
  124. Current Status and Challenges of US-Guided Radiofrequency Ablation of Thyroid Nodules in the Long Term: A Systematic Review vol.13, pp.11, 2018, https://doi.org/10.3390/cancers13112746
  125. Determining an energy threshold for optimal volume reduction of benign thyroid nodules treated by radiofrequency ablation vol.31, pp.7, 2018, https://doi.org/10.1007/s00330-020-07532-y
  126. Comparison of radiofrequency ablation and microwave ablation for benign thyroid nodules: A systematic review and meta‐analysis vol.95, pp.1, 2018, https://doi.org/10.1111/cen.14438
  127. Adverse events of hyperthermic intravesical chemotherapy for non-muscle invasive bladder cancer patients vol.55, pp.4, 2018, https://doi.org/10.1080/21681805.2021.1938664
  128. Safety and Efficacy of Radiofrequency Ablation of Thyroid Nodules-Expanding Treatment Options in the United States vol.5, pp.8, 2018, https://doi.org/10.1210/jendso/bvab110
  129. Differences in the ultrasonographic appearance of thyroid nodules after radiofrequency ablation vol.95, pp.3, 2018, https://doi.org/10.1111/cen.14480
  130. The Role of CEUS in the Evaluation of Thyroid Cancer: From Diagnosis to Local Staging vol.10, pp.19, 2018, https://doi.org/10.3390/jcm10194559
  131. Ultrasound-Guided Radiofrequency Ablation Versus Thyroid Lobectomy for Low-Risk Papillary Thyroid Microcarcinoma: A Propensity-Matched Cohort Study of 884 Patients vol.31, pp.11, 2018, https://doi.org/10.1089/thy.2021.0100
  132. Ultrasound-Guided Radiofrequency Ablation for the Treatment of Primary Hyperparathyroidism: An Efficacy and Safety Study vol.27, pp.12, 2018, https://doi.org/10.1016/j.eprac.2021.07.012
  133. Efficacy and safety of radiofrequency ablation for benign thyroid nodules in patients with previous thyroid lobectomy vol.21, pp.1, 2021, https://doi.org/10.1186/s12880-021-00577-5
  134. Computer-Analyzed Ultrasound Predictors of the Treatment Efficacy of Radiofrequency Ablation for Benign Thyroid Nodules vol.46, pp.1, 2022, https://doi.org/10.1007/s00268-021-06340-9
  135. Retrospective analysis of ultrasound-guided minimally invasive treatment of various thyroid cysts vol.43, pp.1, 2018, https://doi.org/10.1016/j.amjoto.2021.103192
  136. Implications of radiofrequency ablation in patients undergoing thyroid surgery for benign disease in the United States vol.171, pp.1, 2022, https://doi.org/10.1016/j.surg.2021.04.054
  137. Assessment of thyroid-specific quality of life in patients with benign symptomatic thyroid nodules treated with radiofrequency or ethanol ablation: a prospective multicenter study vol.41, pp.1, 2022, https://doi.org/10.14366/usg.21003
  138. Analyzing the adoption of radiofrequency ablation of thyroid nodules using the diffusion of innovations theory: understanding where we are in the United States? vol.41, pp.1, 2018, https://doi.org/10.14366/usg.21117
  139. Contrast-enhanced ultrasound is a reliable and reproducible assessment of necrotic ablated volume after radiofrequency ablation for benign thyroid nodules: a retrospective study vol.39, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1991009
  140. Factors related to the absorption rate of benign thyroid nodules after image-guided microwave ablation: a 3-year follow-up vol.39, pp.1, 2018, https://doi.org/10.1080/02656736.2021.1995632