DOI QR코드

DOI QR Code

Clinical significance of Th17 cells in kidney transplantation

  • Chung, Byung Ha (Convergent Research Consortium for Immunologic Disease,Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Yang, Chul Woo (Convergent Research Consortium for Immunologic Disease,Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Cho, Mi-La (Convergent Research Consortium for Immunologic Disease,Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea)
  • Received : 2018.03.07
  • Accepted : 2018.03.13
  • Published : 2018.09.01

Abstract

Transplantation research has focused on cytotoxic T-cell and plasma cell/ B-cell-targeted strategies, but little attention has been paid to the role of T helper 17 (Th17) cells in allograft dysfunction. However, accumulating evidence suggests that Th17 cells contribute to the development of acute and chronic allograft injury after transplantation of various organs, including the kidney. This review summarizes recent reports on the role of Th17 cells in kidney transplantation. Means of improving allograft outcomes by targeting the Th17 pathway are also suggested.

Keywords

References

  1. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med 2004;351:2715-2729. https://doi.org/10.1056/NEJMra033540
  2. Liu Z, Fan H, Jiang S. CD4(+) T-cell subsets in transplantation. Immunol Rev 2013;252:183-191. https://doi.org/10.1111/imr.12038
  3. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005;6:1133-1141. https://doi.org/10.1038/ni1261
  4. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6:1123-1132. https://doi.org/10.1038/ni1254
  5. Wynn TA. T(H)-17: a giant step from T(H)1 and T(H)2. Nat Immunol 2005;6:1069-1070. https://doi.org/10.1038/ni1105-1069
  6. Loong CC, Lin CY, Lui WY. Expression of interleukin-17 as a predictive parameter in acute renal allograft rejection. Transplant Proc 2000;32:1773. https://doi.org/10.1016/S0041-1345(00)01382-8
  7. Hsieh HG, Loong CC, Lui WY, Chen A, Lin CY. IL-17 expression as a possible predictive parameter for subclinical renal allograft rejection. Transpl Int 2001;14:287-298. https://doi.org/10.1111/j.1432-2277.2001.tb00062.x
  8. Mitchell P, Afzali B, Lombardi G, Lechler RI. The T helper 17-regulatory T cell axis in transplant rejection and tolerance. Curr Opin Organ Transplant 2009;14:326-331. https://doi.org/10.1097/MOT.0b013e32832ce88e
  9. Calvo-Turrubiartes M, Romano-Moreno S, Garcia-Hernandez M, et al. Quantitative analysis of regulatory T cells in kidney graft recipients: a relationship with calcineurin inhibitor level. Transpl Immunol 2009;21:43-49. https://doi.org/10.1016/j.trim.2009.02.002
  10. Warrens AN. Pharmacological control of the immune response in renal transplantation. BJU Int 2002;90:784-791. https://doi.org/10.1046/j.1464-410X.2002.03006.x
  11. Crispim JC, Grespan R, Martelli-Palomino G, et al. Interleukin-17 and kidney allograft outcome. Transplant Proc 2009;41:1562-1564. https://doi.org/10.1016/j.transproceed.2009.01.092
  12. Deteix C, Attuil-Audenis V, Duthey A, et al. Intragraft Th17 infiltrate promotes lymphoid neogenesis and hastens clinical chronic rejection. J Immunol 2010;184:5344-5351. https://doi.org/10.4049/jimmunol.0902999
  13. Loong CC, Hsieh HG, Lui WY, Chen A, Lin CY. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002;197:322-332. https://doi.org/10.1002/path.1117
  14. Van Kooten C, Boonstra JG, Paape ME, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol 1998;9:1526-1534.
  15. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24:179-189. https://doi.org/10.1016/j.immuni.2006.01.001
  16. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235-238. https://doi.org/10.1038/nature04753
  17. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006;126:1121-1133. https://doi.org/10.1016/j.cell.2006.07.035
  18. Kuchroo VK, Awasthi A. Emerging new roles of Th17 cells. Eur J Immunol 2012;42:2211-2214. https://doi.org/10.1002/eji.201242872
  19. Van Voorhis M, Fechner JH, Zhang X, Mezrich JD. The aryl hydrocarbon receptor: a novel target for immunomodulation in organ transplantation. Transplantation 2013;95:983-990. https://doi.org/10.1097/TP.0b013e31827a3d1d
  20. Singh SP, Zhang HH, Foley JF, Hedrick MN, Farber JM. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J Immunol 2008;180:214-221. https://doi.org/10.4049/jimmunol.180.1.214
  21. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007;8:950-957. https://doi.org/10.1038/ni1497
  22. Merville P, Pouteil-Noble C, Wijdenes J, Potaux L, Touraine JL, Banchereau J. Cells infiltrating rejected human kidney allografts secrete IFN-gamma, IL-6, and IL-10, and are modulated by IL-2 and IL-4. Transplant Proc 1993;25(1 Pt 1):111-113.
  23. Merville P, Pouteil-Noble C, Wijdenes J, Potaux L, Touraine JL, Banchereau J. Detection of single cells secreting IFN-gamma, IL-6, and IL-10 in irreversibly rejected human kidney allografts, and their modulation by IL-2 and IL-4. Transplantation 1993;55:639-646. https://doi.org/10.1097/00007890-199303000-00032
  24. Pavlakis M, Strehlau J, Lipman M, Shapiro M, Maslinski W, Strom TB. Intragraft IL-15 transcripts are increased in human renal allograft rejection. Transplantation 1996;62:543-545. https://doi.org/10.1097/00007890-199608270-00020
  25. Solez K, Colvin RB, Racusen LC, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant 2008;8:753-760. https://doi.org/10.1111/j.1600-6143.2008.02159.x
  26. Chung BH, Oh HJ, Piao SG, et al. Higher infiltration by Th17 cells compared with regulatory T cells is associated with severe acute T-cell-mediated graft rejection. Exp Mol Med 2011;43:630-637. https://doi.org/10.3858/emm.2011.43.11.071
  27. Stegall MD, Chedid MF, Cornell LD. The role of complement in antibody-mediated rejection in kidney transplantation. Nat Rev Nephrol 2012;8:670-678. https://doi.org/10.1038/nrneph.2012.212
  28. Mauiyyedi S, Pelle PD, Saidman S, et al. Chronic humoral rejection: identification of antibody-mediated chronic renal allograft rejection by C4d deposits in peritubular capillaries. J Am Soc Nephrol 2001;12:574-582.
  29. Vanaudenaerde BM, Dupont LJ, Wuyts WA, et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J 2006;27:779-787. https://doi.org/10.1183/09031936.06.00019405
  30. Healy DG, Watson RW, O'Keane C, et al. Neutrophil transendothelial migration potential predicts rejection severity in human cardiac transplantation. Eur J Cardiothorac Surg 2006;29:760-766. https://doi.org/10.1016/j.ejcts.2006.01.065
  31. Gore-Hyer E, Shegogue D, Markiewicz M, et al. TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol 2002;283:F707-F716. https://doi.org/10.1152/ajprenal.00007.2002
  32. LeBleu VS, Taduri G, O'Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med 2013;19:1047-1053. https://doi.org/10.1038/nm.3218
  33. Chung BH, Kim KW, Kim BM, Doh KC, Cho ML, Yang CW. Increase of Th17 cell phenotype in kidney transplant recipients with chronic allograft dysfunction. PLoS One 2015;10:e0145258. https://doi.org/10.1371/journal.pone.0145258
  34. Chung BH, Kim KW, Sun IO, et al. Increased interleukin-17 producing effector memory T cells in the end-stage renal disease patients. Immunol Lett 2012;141:181-189. https://doi.org/10.1016/j.imlet.2011.10.002
  35. Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 2004;4:378-383. https://doi.org/10.1111/j.1600-6143.2004.00332.x
  36. Guerra G, Srinivas TR, Meier-Kriesche HU. Calcineurin inhibitor-free immunosuppression in kidney transplantation. Transpl Int 2007;20:813-827. https://doi.org/10.1111/j.1432-2277.2007.00528.x
  37. Rentenaar RJ, van Diepen FN, Meijer RT, et al. Immune responsiveness in renal transplant recipients: mycophenolic acid severely depresses humoral immunity in vivo. Kidney Int 2002;62:319-328. https://doi.org/10.1046/j.1523-1755.2002.00425.x
  38. Takatsuki M, Uemoto S, Inomata Y, et al. Analysis of alloreactivity and intragraft cytokine profiles in living donor liver transplant recipients with graft acceptance. Transpl Immunol 2001;8:279-286. https://doi.org/10.1016/S0966-3274(01)00027-2
  39. Weimer R, Melk A, Daniel V, Friemann S, Padberg W, Opelz G. Switch from cyclosporine A to tacrolimus in renal transplant recipients: impact on Th1, Th2, and monokine responses. Hum Immunol 2000;61:884-897. https://doi.org/10.1016/S0198-8859(00)00152-X
  40. Syrjala SO, Keranen MA, Tuuminen R, et al. Increased Th17 rather than Th1 alloimmune response is associated with cardiac allograft vasculopathy after hypothermic preservation in the rat. J Heart Lung Transplant 2010;29:1047-1057. https://doi.org/10.1016/j.healun.2010.04.012
  41. Chung BH, Kim KW, Kim BM, et al. Dysregulation of Th17 cells during the early post-transplant period in patients under calcineurin inhibitor based immunosuppression. PLoS One 2012;7:e42011. https://doi.org/10.1371/journal.pone.0042011
  42. Chung BH, Oh HJ, Piao SG, et al. Clinical significance of the ratio between FOXP3 positive regulatory T cell and interleukin-17 secreting cell in renal allograft biopsies with acute T-cell-mediated rejection. Immunology 2012;136:344-351. https://doi.org/10.1111/j.1365-2567.2012.03588.x
  43. Delgoffe GM, Pollizzi KN, Waickman AT, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011;12:295-303.
  44. Zeiser R, Leveson-Gower DB, Zambricki EA, et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 2008;111:453-462. https://doi.org/10.1182/blood-2007-06-094482
  45. Flechner SM, Kurian SM, Solez K, et al. De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am J Transplant 2004;4:1776-1785. https://doi.org/10.1111/j.1600-6143.2004.00627.x
  46. Larson TS, Dean PG, Stegall MD, et al. Complete avoidance of calcineurin inhibitors in renal transplantation: a randomized trial comparing sirolimus and tacrolimus. Am J Transplant 2006;6:514-522. https://doi.org/10.1111/j.1600-6143.2005.01177.x
  47. Hackstein H. Rapamycin and dendritic cells: keep on movin'. Transplantation 2006;82:739-740.
  48. Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009;30:832-844. https://doi.org/10.1016/j.immuni.2009.04.014
  49. Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 20120;12:325-338. https://doi.org/10.1038/nri3198
  50. Yurchenko E, Shio MT, Huang TC, et al. Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo. PLoS One 2012;7:e35572. https://doi.org/10.1371/journal.pone.0035572
  51. Li Y, Shi Y, Huang Z, et al. CNI induced Th17/Treg imbalance and susceptibility to renal dysfunction in renal transplantation. Int Immunopharmacol 2011;11:2033-2038. https://doi.org/10.1016/j.intimp.2011.08.015
  52. Kim KW, Chung BH, Kim BM, Cho ML, Yang CW. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology 2015;144:68-78. https://doi.org/10.1111/imm.12351
  53. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008;8:685-698. https://doi.org/10.1038/nri2378
  54. Peelen E, Knippenberg S, Muris AH, et al. Effects of vitamin D on the peripheral adaptive immune system: a review. Autoimmun Rev 2011;10:733-743. https://doi.org/10.1016/j.autrev.2011.05.002
  55. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol 2010;10:482-496. https://doi.org/10.1016/j.coph.2010.04.001
  56. Smolders J, Menheere P, Thewissen M, et al. Regulatory T cell function correlates with serum 25-hydroxyvitamin D, but not with 1,25-dihydroxyvitamin D, parathyroid hormone and calcium levels in patients with relapsing remitting multiple sclerosis. J Steroid Biochem Mol Biol 2010;121:243-246. https://doi.org/10.1016/j.jsbmb.2010.03.001
  57. Datta Mitra A, Raychaudhuri SP, Abria CJ, et al. $1{\alpha}$,25-Dihydroxyvitamin-D3-3-bromoacetate regulates AKT/mTOR signaling cascades: a therapeutic agent for psoriasis. J Invest Dermatol 2013;133:1556-1564. https://doi.org/10.1038/jid.2013.3
  58. Ranganathan P, Khalatbari S, Yalavarthi S, Marder W, Brook R, Kaplan MJ. Vitamin D deficiency, interleukin 17, and vascular function in rheumatoid arthritis. J Rheumatol 2013;40:1529-1534. https://doi.org/10.3899/jrheum.130012
  59. Lisse TS, Hewison M. Vitamin D: a new player in the world of mTOR signaling. Cell Cycle 2011;10:1888-1889. https://doi.org/10.4161/cc.10.12.15620
  60. Lisse TS, Liu T, Irmler M, et al. Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB J 2011;25:937-947. https://doi.org/10.1096/fj.10-172577
  61. Chung BH, Kim BM, Doh KC, et al. Suppressive effect of $1{\alpha}$,25-dihydroxyvitamin D3 on Th17-immune responses in kidney transplant recipients with tacrolimus-based immunosuppression. Transplantation 2017;101:1711-1719. https://doi.org/10.1097/TP.0000000000001516

Cited by

  1. A Review on the Function and Regulation of ARHGDIB/RhoGDI2 Expression Including the Hypothetical Role of ARHGDIB/RhoGDI2 Autoantibodies in Kidney Transplantation vol.6, pp.5, 2018, https://doi.org/10.1097/txd.0000000000000993
  2. T helper 17 cells in the pathophysiology of acute and chronic kidney disease vol.40, pp.1, 2018, https://doi.org/10.23876/j.krcp.20.185