DOI QR코드

DOI QR Code

Feasibility study of ambient cured geopolymer concrete -A review

  • Received : 2018.04.09
  • Accepted : 2018.07.12
  • Published : 2018.08.25

Abstract

Geopolymer concrete is a fastest developing field of research for utilizing industrial and agro waste materials as an alternative for Portland cement based concrete. Geopolymers are formed by the alkaline activation of aluminosilicates rich materials termed as geopolymerization. The process of geopolymerization requires elevated temperature curing which restricts its application to precast industry. This review summarizes the work carried out on developing the geopolymer concrete with the addition of various mineral admixtures at ambient curing temperature conditions. An overview of studies promoting the geopolymer concrete in general building construction is presented. Literature study revealed that geopolymer concrete with the addition of admixtures can exhibit desirable properties at ambient temperature conditions.

Keywords

References

  1. Adak, D., Sarkar, M. and Mandal, S. (2014), "Effect of nano-silica on strength and durability of fly ash based geopolymer mortar", Constr. Build. Mater., 70, 453-459. https://doi.org/10.1016/j.conbuildmat.2014.07.093
  2. Adak, D., Sarkar, M. and Mandal, S. (2017), "Structural performance of nano-silica modified fly-ash based geopolymer concrete", Constr. Build. Mater., 135, 430-439. https://doi.org/10.1016/j.conbuildmat.2016.12.111
  3. Adam, A.A. (2009), Strength and Durability Properties of Alkali Activated Slag and Fly Ash-based Geopolymer Concrete, RMIT University Melbourne, Australia
  4. Aggarwal, P., Singh, R.P. and Aggarwal, Y. (2015), "Use of nano-silica in cement based materials-A review", Cogent Eng., 2(1), 1078018.
  5. Al-Majidi, M.H., Lampropoulos, A., Cundy, A. and Meikle, S. (2016), "Development of geopolymer mortar under ambient temperature for in situ applications", Constr. Build. Mater., 120, 198-211. https://doi.org/10.1016/j.conbuildmat.2016.05.085
  6. Alanazi, H., Yang, M., Zhang, D. and Gao, Z.J. (2016), "Bond strength of PCC pavement repairs using metakaolin-based geopolymer mortar", Cement Concrete Compos., 65, 75-82. https://doi.org/10.1016/j.cemconcomp.2015.10.009
  7. ASTM (2005), ASTM C 989 - 05 Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars, American Society for Testing and Materials (ASTM), America.
  8. Bakharev, T. (2004), "Effect of curing regime and type of activator on properties of alkali-activated fly ash", R. Soc. Chem., 292, 249-262.
  9. Behera, R.K. (2010), Characterization of Fly Ash for Their Effective Management and Utilization.
  10. Daffalla, S.B., Mukhtar, H. and Shaharun, M.S. (2010), "Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption".
  11. Davidovits, J. (1984), "X-ray analysis and X-ray diffraction of casing stones from the pyramids of Egypt and the limestone of the associated quarries", Science In Egyptology Symposia.
  12. Davidovits, J. (1994), "High alkali cements for 21st century concretes", Struct. Eng. Mech., 144, 383-398.
  13. Deb, P.S., Sarker, P.K. and Barbhuiya, S. (2015), "Effects of nano-silica on the strength development of geopolymer cured at room temperature", Constr. Build. Mater., 101, 675-683. https://doi.org/10.1016/j.conbuildmat.2015.10.044
  14. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S.J. (2007), "Geopolymer technology: the current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  15. Fernandez-Jimenez, A.M., Palomo, A. and Lopez-Hombrados, C. (2006), "Engineering properties of alkaliactivated fly ash concrete", ACI Mater. J., 103(2), 106-112.
  16. Foletto, E., Castoldi, M., Oliveira, L., Hoffmann, R. and Jahn, S. (2009), "Conversion of rice husk ash into zeolitic materials", Lat. Am. Appl. Res., 39(1), 75-78.
  17. Global Cement Consumption Forecasts 2016-18, United Kingdom.
  18. Goriparthi, M.R. and Rao, G.T. (2017), "Effect of fly ash and GGBS combination on mechanical and durability properties of GPC", Adv. Concrete Constr., 5(4), 313-330. https://doi.org/10.12989/ACC.2017.5.4.313
  19. Hardjito, D., Wallah, S.E., Sumajouw, D.M. and Rangan, B.V. (2004), "On the development of fly ash-based geopolymer concrete", ACI Mater. J., Am. Concrete Inst., 101(6), 467-472.
  20. Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014), "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-$SiO_2$", Constr. Build. Mater., 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002
  21. He, J., Jie, Y., Zhang, J., Yu, Y. and Zhang, G. (2013), "Synthesis and characterization of red mud and rice husk ash-based geopolymer composites", Cement Concrete Compos., 37, 108-118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
  22. Heah, C., Kamarudin, H., Al Bakri, A.M., Binhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C. and Liew, Y. (2011), "Effect of curing profile on kaolin-based geopolymers", Phys. Procedia, 22, 305-311. https://doi.org/10.1016/j.phpro.2011.11.048
  23. Inti, S., Sharma, M. and Tandon, V. (2016), Ground Granulated Blast Furnace Slag (GGBS) and Rice Husk Ash (RHA) Uses in the Production of Geopolymer Concrete.
  24. Jindal, B.B., Singhal, D., Sharma, S.K., Ashish, D.K. and Parveen (2017a), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5(1), 17-29. https://doi.org/10.12989/acc.2017.5.1.17
  25. Jindal, B.B., Parveen, Singhal, D. and Goyal, A. (2017b), "Predicting relationship between mechanical properties of low calcium fly ash-based geopolymer concrete", Tran. Ind. Ceram. Soc., 76(4), 1-8. https://doi.org/10.1080/0371750X.2016.1231086
  26. Jindal, B.B., Singhal, D., Sharma, S., Yadav, A., Shekhar, S. and Anand, A. (2017c), "Strength and permeation properties of alccofine activated low calcium fy ash geopolymer concrete", Comput. Concrete, 20(6), 683-688. https://doi.org/10.12989/CAC.2017.20.6.683
  27. Jindal, B.B., Singhal, D. and Sharma, S.K. (2017d), "Suitability of ambient-cured alccofine added lowcalcium fly ash-based geopolymer concrete", Ind. J. Sci. Technol., 10(12), DOI: 10.17485/ijst/2017/v10i12/110428.
  28. Jindal, B.B., Yadav, A., Anand, A. and Badal, A. (2016), "Development of high strength fly ash based geopolymer concrete with alccofine", IOSR J. Mech. Civil Eng. (IOSR-JMCE), 55-58.
  29. Jindal, B.B., Dhirendra Singhal, S.K.S. and Parveen (2017e), "Prediction of mechanical properties of alccofine activated low calcium fly ash based geopolymer concrete", ARPN J. Eng. Appl. Sci., 12(9), 3022-3031.
  30. Kani, E.N. and Allahverdi, A. (2009), "Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan", J. Mater. Sci., 44(12), 3088-3097. https://doi.org/10.1007/s10853-009-3411-1
  31. Kathirvel, P., Thangavelu, M., Gopalan, R. and Kaliyaperumal, S.R.M. (2017), "Bond characteristics of reinforcing steel embedded in geopolymer concrete", IOP Conference Series: Earth and Environmental Science.
  32. Kim, Y.Y., Lee, B.J., Saraswathy, V. and Kwon, S.J. (2014), "Strength and durability performance of alkaliactivated rice husk ash geopolymer mortar", Scientif. World J., 2014, Article ID 209584, 10.
  33. Kishore, G.N. and Gayathri, B. (2017), "Experimental study on rise husk ash & fly ash based geo-polymer concrete using M-sand", IOP Conference Series: Materials Science and Engineering.
  34. Limited, A.C. (2014), Alccofine 1203, Micro Fine Mineral Additive for Concrete and Mortars, Counto Microfine Products Pvt. Ltd., Goa.
  35. Lloyd, N. and Rangan, B. (2010), "Geopolymer concrete with fly ash", Second International Conference on Sustainable Construction Materials and Technologies.
  36. Lloyd, N. and Rangan, V. (2009), "Geopolymer concrete-sustainable cementless concrete", ACI Spec. Publ., 261, 33-54.
  37. Malhotra, V. (1999), "Making concrete "greener" with fly ash", Concrete Int., 21(5), 61-66.
  38. Mehta, A. and Siddique, R. (2017), "Strength, permeability and micro-structural characteristics of lowcalcium fly ash based geopolymers", Constr. Build. Mater., 141, 325-334. https://doi.org/10.1016/j.conbuildmat.2017.03.031
  39. Mehta, P.K. (2001), "Reducing the environmental impact of concrete", Concrete Int. 23(10), 61-66.
  40. Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  41. Nath, P. and Sarker, P.K. (2015), "Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature", Cement Concrete Compos., 55, 205-214. https://doi.org/10.1016/j.cemconcomp.2014.08.008
  42. Nath, P., Sarker, P.K. and Rangan, V.B. (2015), "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing", Procedia Eng., 125, 601-607. https://doi.org/10.1016/j.proeng.2015.11.077
  43. Neupane, K., Kidd, P., Chalmers, D., Baweja, D. and Shrestha, R. (2016), "Investigation on compressive strength development and drying shrinkage of ambient cured powder-activated geopolymer concretes", Aust. J. Civil Eng., 14(1), 1-12. https://doi.org/10.1080/14488353.2015.1092631
  44. Noushini, A., Babaee, M. and Castel, A. (2016), "Suitability of heat-cured low-calcium fly ash-based geopolymer concrete for precast applications", Mag. Concr. Res, 68(4), 163-177. https://doi.org/10.1680/macr.15.00065
  45. Palomo, A., Grutzeck, M. and Blanco, M. (1999), "Alkali-activated fly ashes: a cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  46. Jangra, P., Singhal, D., Jindal, B.B.,Junaid, M.T. and Mehta, A. (2018)," Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing", Constr. Build. Mater., 180, 298-307. https://doi.org/10.1016/j.conbuildmat.2018.05.286
  47. Patil, A.A., Chore, H. and Dodeb, P. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. https://doi.org/10.12989/acc.2014.2.1.029
  48. Perera, D., Uchida, O., Vance, E. and Finnie, K. (2007), "Influence of curing schedule on the integrity of geopolymers", J. Mater. Sci., 42(9), 3099-3106. https://doi.org/10.1007/s10853-006-0533-6
  49. Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S. and Hatanaka, S. (2014), "The effect of adding nano-$SiO_2\;and\;nano-Al_2O_3$ on properties of high calcium fly ash geopolymer cured at ambient temperature", Mater. Des., 55, 58-65.
  50. Quercia, G. and Brouwers, H. (2010), "Application of nano-silica (nS) in concrete mixtures", 8th fib International Ph. D. Symposium in Civil Engineering, Lyngby.
  51. Rangan, B.V. (2008), "Low-calcium fly ash-based geopolymer concrete", Faculty of Engineering, Curtin University of Technology.
  52. Rangan, B.V., Hardjito, D., Wallah, S.E. and Sumajouw, D.M. (2005), "Studies on fly ash-based geopolymer concrete", Proceedings of the World Congress Geopolymer, Saint Quentin, France.
  53. Rao, G.M. and Rao, T.G. (2015), "Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar", Arab. J. Sci. Eng., 40(11), 3067-3074. https://doi.org/10.1007/s13369-015-1757-z
  54. Rashad, A.M. (2014), "A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash", Mater. Des., 53, 1005-1025. https://doi.org/10.1016/j.matdes.2013.07.074
  55. Ravikumar, D., Peethamparan, S. and Neithalath, N. (2010), "Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder", Cement Concrete Compos., 32(6), 399-410. https://doi.org/10.1016/j.cemconcomp.2010.03.007
  56. Rovnaník, P. (2010), "Effect of curing temperature on the development of hard structure of metakaolinbased geopolymer", Constr. Build. Mater., 24(7), 1176-1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023
  57. Sharma, C. and Jindal, B.B. (2015), "Effect of variation of fly ash on the compressive strength of fly ash based Geopolymer Concrete", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), April.
  58. Shekhovtsova, J., Kovtun, M. and Kearsley, E.P. (2015), "Evaluation of short-and long-term properties of heat-cured alkali-activated fly ash concrete", Mag. Concrete Res., 67(16), 897-905. https://doi.org/10.1680/macr.14.00377
  59. Shinde, B. and Kadam, K. (2016), "Effect of addition of ordinary portland cement on geopolymer concrete with ambient curing", International Journal of Modern Trends in Engineering and Research, Amravati, India.
  60. Shinde, B. and Kadam, K. (2016) "Properties of flyash based geopolymer mortar with ambient curing", Int. J. Eng. Res., 5, 203-206.
  61. Siddique, R. and Khan, M.I. (2011), Supplementary Cementing Materials, Springer Science & Business Media.
  62. Singh, B., Ishwarya, G., Gupta, M. and Bhattacharyya, S.K. (2015), "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., 85, 78-90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
  63. Singhal, D., Jindal, B.B. and Garg, A. (2017), "Mechanical properties of ground granulated blast furnace slag based geopolymer concrete incorporating alccofine with different concentration and curing temperature", Adv. Sci. Eng. Med., 9(11), 948-958. https://doi.org/10.1166/asem.2017.2059
  64. Sofi, M., Van Deventer, J., Mendis, P. and Lukey, G. (2007), "Bond performance of reinforcing bars in inorganic polymer concrete (IPC)", J. Mater. Sci., 42(9), 3107-3116. https://doi.org/10.1007/s10853-006-0534-5
  65. Sreevidya, V. (2014), "Investigations on the flexural behaviour of ferro geopolymer composite slabs", http://hdl.handle.net/10603/22931.
  66. Srinivasreddy, A.B., McCarthy, T.J. and Lume, E. (2013), "Effect of rice husk ash on workability and strength of concrete", 26th Biennial Concrete Institute of Australia's National Conference (Concrete 2013), Australia.
  67. Sujatha, T., Kannapiran, K. and Nagan, S. (2012), "Strength assessment of heat cured geopolymer concrete slender column", Asian J. Civil Eng., 13(5), 635-646.
  68. Supraja, V. and Rao, M.K. (2012), "Experimental study on Geo-Polymer concrete incorporating GGBS", Int. J. Elec. Commun. Soft Comput. Sci. Eng. (IJECSCSE), 2(2), 11-15.
  69. Temuujin, J., Van Riessen, A. and Williams, R. (2009), "Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes", J. Hazard. Mater., 167(1), 82-88. https://doi.org/10.1016/j.jhazmat.2008.12.121
  70. Van Jaarsveld, J., Van Deventer, J. and Lukey, G. (2002), "The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers", Chem. Eng. J., 89(1), 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6
  71. Venkatesan, R.P. and Pazhani, K.C. (2016), "Strength and durability properties of geopolymer concrete made with ground granulated blast furnace slag and black rice husk ash", KSCE J. Civil Eng., 20(6), 2384-2391. https://doi.org/10.1007/s12205-015-0564-0
  72. Vijai, K., Kumutha, R. and Vishnuram, B. (2010), "Effect of types of curing on strength of geopolymer concrete", Int. J. Phys. Sci., 5(9), 1419-1423.
  73. Wallah, S. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: Long-term properties", Res. Report-GC2, Curtin University, Australia.
  74. Xie, T. and Ozbakkaloglu, T. (2015), "Behavior of low-calcium fly ash bottom ash based geopolymer concrete cured at ambient temperature", Ceram. Int., 85, 5945-5958.
  75. Xu, H. and Van Deventer, J. (2000), "The geopolymerisation of alumino-silicate minerals", Int. J. Min. Pr., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5
  76. Zhang, M.H., Islam, J. and Peethamparan, S. (2012), "Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag", Cement Concrete Compos., 34(5), 650-662. https://doi.org/10.1016/j.cemconcomp.2012.02.005

Cited by

  1. Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer vol.11, pp.2, 2021, https://doi.org/10.12989/acc.2021.11.2.127
  2. Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete vol.11, pp.3, 2018, https://doi.org/10.12989/acc.2021.11.3.219
  3. Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach vol.27, pp.4, 2018, https://doi.org/10.12989/cac.2021.27.4.319