DOI QR코드

DOI QR Code

Carrier Sensing Techniques for Long Range Internet of Things

장거리 사물인터넷을 위한 케리어 센싱 기술

  • Lee, Il-Gu (Department of Convergence Security Engineering, Sungshin University)
  • 이일구 (성신여자대학교 융합보안공학과)
  • Received : 2018.06.12
  • Accepted : 2018.08.20
  • Published : 2018.08.28

Abstract

In the Internet of Things (IoT) era, objects are connected to each other by wired and wireless networks, and information is exchanged whenever necessary. Channel and network environments change over time; thus, a carrier sensing function that identifies whether signals containing information are present in the channel is essential. The carrier sensing circuit of a wireless communication system determines the receiver sensitivity, and the receiver sensitivity is closely related to the service coverage and service quality of the system. As the receiver sensitivity decreases, the service coverage increases but it becomes sensitive to noise. However, as the receiver sensitivity increases, the service coverage decreases but it becomes insensitive to the noise. Therefore, carrier sensing design and optimization are very important from the viewpoint of the receiver sensitivity and noise sensitivity. This paper proposes an effective carrier sensing technique from the viewpoint of the receiver sensitivity for the long range IoT.

사물인터넷 시대에는 사물들이 유무선 네트워크로 서로 연결되어 필요할 때마다 정보를 주고 받는다. 채널과 네트워크 환경은 시간에 따라 변하고 잡음과 간섭 신호가 채널에 혼재하므로 자신이 수신해야 하는 신호가 언제 채널에 존재하는지 판단하는 케리어 센싱 기능이 매우 중요하다. 무선 통신 시스템의 케리어 센싱 회로는 수신기의 수신감도를 결정짓고, 수신감도는 시스템의 서비스 커버리지와 서비스 품질과 밀접한 연관이 있다. 수신감도가 낮을수록 서비스 커버리지가 증가하지만 노이즈에 민감해지고, 수신감도가 높을수록 서비스 커버리지는 감소하는 반면에 노이즈에 둔감해 진다. 그러므로 수신감도와 노이즈 민감도 관점에서 최적의 케리어 센싱 설계와 최적화가 매우 중요하다. 본 논문에서는 장거리 사물인터넷을 위해 수신감도의 최적화 관점에서 효과적인 케리어 센싱 기법을 제안한다.

Keywords

References

  1. T. Snyder, G. Byrd. (2017). Internet of Everything, Computer, 50(6), 8-9. https://doi.org/10.1109/MC.2017.179
  2. I. G. Lee, M. Kim. (2016). Interference-aware self-optimizing Wi-Fi for high-efficiency internet of things in dense networks, Computer Communications, 89(1), 60-74.
  3. B. Yan, H. Gharavi. (2017). Receiver Sensitivity in CSMA Networks, IEEE 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).
  4. R. Laufer, L. Kleinrock. (2016). The Capacity of wireless CSMA/CA networks, IEEE/ACM Transactions on Networking (TON), 24(3), 1518-1532. https://doi.org/10.1109/TNET.2015.2415465
  5. F. Y. Hung, I. Marsic. (2007). Effectiveness of Physical and Virtual Carrier Sensing in IEEE 802.11 Wireless Ad Hoc Networks, Wireless Communications and Networking Conference (WCNC).
  6. C. Thorpe, L. Murphy. (2014). A Survey of Adaptive Carrier Sensing Mechanisms for IEEE 802.11 Wireless Networks, IEEE Communications Surveys & Tutorials, 16(3), 1266-1293. https://doi.org/10.1109/SURV.2014.031814.00177
  7. X. Yang, N. Vaidya. (2005). On physical carrier sensing in wireless ad hoc networks. 24th Annual Joint Conference of the IEEE Computer and Communciations (ICC) Societies.
  8. M. Takai, J. Martin, R. Bagrodia, A. Ren. (2002). Directional virtual carrier sensing for directional antennas in mobile ad hoc networks. Proceeding of the 3rd ACM international symposium on Mobile ad hoc networking & computing (MobiHoc), 183-193.
  9. J. Deng, B. Liang, P. K. Varshney. (2004). Tunning the carrier sensing range of IEEE 802.11 MAC, IEEE Global Telecommunications Conference (GLOBCOM).
  10. B. Bellalta. (2016). IEEE 802.11ax: High-efficiency WLANS, IEEE Wireless Communications, 23(1), 38-46. https://doi.org/10.1109/MWC.2016.7422404
  11. M. S. Afaqui, G. V. Eduard, L. A. Elena . (2017). IEEE 802.11ax: Challenges and Requirements for Future High Efficiency WiFi, IEEE Wireless Communications, 24(3), 130-137. https://doi.org/10.1109/MWC.2016.1600089WC
  12. D. Deng, Y. P. Lin, X. Yang, J. Zhu, Y. B. Li, J. Luo, K. C. Chen. (2017). IEEE 802.11ax: Highly Efficient WLANs for Intelligent Information Infrastructure, IEEE Communications Magazine, 55(12), 52-29.
  13. C. D. Lee. (2017). An Adaptive Traffic Interference Control System for Wireless Home IoT services. Journal of Digital Convergence, 15(4), 259-266. https://doi.org/10.14400/JDC.2017.15.4.259
  14. D. C. Son. (2016). A Study on Algorithm for Reducing Communication Error Rate in Special Network, Journal of Digital Convergence, 14(11), 325-331. https://doi.org/10.14400/JDC.2016.14.11.325
  15. I. G. Lee, J. B. Son, S. K. Lee. (2009). Field Test and Experimental Characterization of 5GHz RF Transceiver for Coverage Extension. Wireless Communications and Networking Conference.
  16. IEEE 802.11a Standard. (1999). Part 11: Wireless LAN, Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-Speed Physical Layer in the 5 GHz Band, supplement to IEEE 802.11 Standard.
  17. R. Bhardwaj, K. Chintalapudi, R. Ramjee. (2018). Skip-Correlation for Multi-Power Wireless Carrier Sensing, 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI), 227-242..
  18. J. Y. Su. (2018). Linking Algorithm between IoT devices for smart factory environment of SMEs, Journal of Convergence for Information Technology, 8(2), 233-238. https://doi.org/10.22156/CS4SMB.2018.8.2.233
  19. S. H. Lee, D. H. Shim, D. W. Lee. (2016). Actual Cases of Internet of Thing on Smart City Industry, Journal of Convergence for Information Technology, 6(4), 65-70. https://doi.org/10.22156/CS4SMB.2016.6.4.065