DOI QR코드

DOI QR Code

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena (Department of Prosthetic Dentistry, UKR University Hospital Regensburg) ;
  • Hahnel, Sebastian (Department of Prosthetic Dentistry, UKR University Hospital Regensburg) ;
  • Behr, Michael (Department of Prosthetic Dentistry, UKR University Hospital Regensburg) ;
  • Rosentritt, Martin (Department of Prosthetic Dentistry, UKR University Hospital Regensburg)
  • 투고 : 2018.01.25
  • 심사 : 2018.05.08
  • 발행 : 2018.08.31

초록

PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

키워드

참고문헌

  1. Rauch A, Reich S, Schierz O. Chair-side generated posterior monolithic lithium disilicate crowns: clinical survival after 6 years. Clin Oral Investig 2017;21:2083-9. https://doi.org/10.1007/s00784-016-1998-6
  2. Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D. Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig 2013;17:275-84. https://doi.org/10.1007/s00784-012-0700-x
  3. Toman M, Toksavul S. Clinical evaluation of 121 lithium disilicate all-ceramic crowns up to 9 years. Quintessence Int 2015;46:189-97.
  4. Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 2014;112:22-30. https://doi.org/10.1016/j.prosdent.2014.01.005
  5. Cacaci C, Cantner F, Mucke T, Randelzhofer P, Hajto J, Beuer F. Clinical performance of screw-retained and cemented implant-supported zirconia single crowns: 36-month results. Clin Oral Investig 2017;21:1953-9. https://doi.org/10.1007/s00784-016-1982-1
  6. Dogan S, Raigrodski AJ, Zhang H, Mancl LA. Prospective cohort clinical study assessing the 5-year survival and success of anterior maxillary zirconia-based crowns with customized zirconia copings. J Prosthet Dent 2017;117:226-32. https://doi.org/10.1016/j.prosdent.2016.07.019
  7. Nejatidanesh F, Moradpoor H, Savabi O. Clinical outcomes of zirconia-based implant- and tooth-supported single crowns. Clin Oral Investig 2016;20:169-78. https://doi.org/10.1007/s00784-015-1479-3
  8. Wasiluk G, Chomik E, Gehrke P, Pietruska M, Skurska A, Pietruski J. Incidence of undetected cement on CAD/CAM monolithic zirconia crowns and customized CAD/CAM implant abutments. A prospective case series. Clin Oral Implants Res 2017;28:774-8. https://doi.org/10.1111/clr.12879
  9. Preis V, Hahnel S, Behr M, Bein L, Rosentritt M. In-vitro fatigue and fracture testing of CAD/CAM-materials in implant-supported molar crowns. Dent Mater 2017;33:427-33. https://doi.org/10.1016/j.dental.2017.01.003
  10. Rosentritt M, Raab P, Hahnel S, Stockle M, Preis V. In-vitro performance of CAD/CAM-fabricated implant-supported temporary crowns. Clin Oral Investig 2017;21:2581-7. https://doi.org/10.1007/s00784-017-2057-7
  11. Rosentritt M, Hahnel S, Engelhardt F, Behr M, Preis V. In vitro performance and fracture resistance of CAD/CAMfabricated implant supported molar crowns. Clin Oral Investig 2017;21:1213-9. https://doi.org/10.1007/s00784-016-1898-9
  12. Zarone F, Sorrentino R, Traini T, Di lorio D, Caputi S. Fracture resistance of implant-supported screw- versus cement-retained porcelain fused to metal single crowns: SEM fractographic analysis. Dent Mater 2007;23:296-301. https://doi.org/10.1016/j.dental.2005.10.013
  13. Al-Omari WM, Shadid R, Abu-Naba'a L, El Masoud B. Porcelain fracture resistance of screw-retained, cement-retained, and screw-cement-retained implant-supported metal ceramic posterior crowns. J Prosthodont 2010;19:263-73. https://doi.org/10.1111/j.1532-849X.2009.00560.x
  14. Pjetursson BE, Thoma D, Jung R, Zwahlen M, Zembic A. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin Oral Implants Res 2012;23:22-38.
  15. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G. Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 2004;19:247-59.
  16. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res 2008;19:119-30. https://doi.org/10.1111/j.1600-0501.2007.01453.x
  17. Zimmermann M, Koller C, Mehl A, Hickel R. Indirect zirconiareinforced lithium silicate ceramic CAD/CAM restorations: Preliminary clinical results after 12 months. Quintessence Int 2017;48:19-25.
  18. Dirxen C, Blunck U, Preissner S. Clinical performance of a new biomimetic double network material. Open Dent J 2013;7:118-22. https://doi.org/10.2174/1874210620130904003
  19. Preis V, Behr M, Hahnel S, Rosentritt M. Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/CAM-fabricated ZLS molar crowns. Dent Mater 2015;31:1363-9. https://doi.org/10.1016/j.dental.2015.08.154
  20. Schwindling FS, Rues S, Schmitter M. Fracture resistance of glazed, full-contour ZLS incisor crowns. J Prosthodont Res 2017;61:344-9. https://doi.org/10.1016/j.jpor.2016.12.008
  21. Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, Lohbauer U. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent Mater 2017;33:84-98. https://doi.org/10.1016/j.dental.2016.10.009
  22. Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, Danzer R, Lohbauer U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent Mater 2017;33:99-109. https://doi.org/10.1016/j.dental.2016.10.008
  23. Ramos Nde C, Campos TM, Paz IS, Machado JP, Bottino MA, Cesar PF, Melo RM. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater 2016;32:870-8. https://doi.org/10.1016/j.dental.2016.03.018
  24. Scharnagl P, Behr M, Rosentritt M, Leibrock A, Handel G. Simulation of physiological tooth mobility in in-vitro stress examination of dental restorations in the masticator. J Dent Res 1998;77:1260. Abstract 431.
  25. Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of allceramic fixed-partial dentures. Dent Mater 2006;22:176-82. https://doi.org/10.1016/j.dental.2005.04.024
  26. Rosentritt M, Behr M, Scharnagl P, Handel G, Kolbeck C. Influence of resilient support of abutment teeth on fracture resistance of all-ceramic fixed partial dentures: an in vitro study. Int J Prosthodont 2011;24:465-8.
  27. Rosentritt M, Behr M, van der Zel JM, Feilzer AJ. Approach for valuating the influence of laboratory simulation. Dent Mater 2009;25:348-52. https://doi.org/10.1016/j.dental.2008.08.009
  28. Rosentritt M, Siavikis G, Behr M, Kolbeck C, Handel G. Approach for valuating the significance of laboratory simulation. J Dent 2008;36:1048-53. https://doi.org/10.1016/j.jdent.2008.09.001
  29. Fasbinder DJ, Dennison JB, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc 2010;141:10S-4S. https://doi.org/10.14219/jada.archive.2010.0355
  30. Reich S, Schierz O. Chair-side generated posterior lithium disilicate crowns after 4 years. Clin Oral Investig 2013;17:1765-72. https://doi.org/10.1007/s00784-012-0868-0
  31. Yang R, Arola D, Han Z, Zhang X. A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue. J Prosthet Dent 2014;112:878-85. https://doi.org/10.1016/j.prosdent.2014.03.005
  32. Zesewitz TF, Knauber AW, Nothdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014;27:264-6. https://doi.org/10.11607/ijp.3815
  33. Carvalho AO, Bruzi G, Giannini M, Magne P. Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process. J Prosthet Dent 2014;111:310-7. https://doi.org/10.1016/j.prosdent.2013.09.020
  34. Seydler B, Rues S, Muller D, Schmitter M. In vitro fracture load of monolithic lithium disilicate ceramic molar crowns with different wall thicknesses. Clin Oral Investig 2014;18:1165-71. https://doi.org/10.1007/s00784-013-1062-8
  35. Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M. Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod 2011;33:427-33. https://doi.org/10.1093/ejo/cjq097
  36. Chavali R, Nejat AH, Lawson NC. Machinability of CADCAM materials. J Prosthet Dent 2017;118:194-9. https://doi.org/10.1016/j.prosdent.2016.09.022
  37. Weyhrauch M, Igiel C, Scheller H, Weibrich G, Lehmann KM. Fracture strength of monolithic all-ceramic crowns on titanium implant abutments. Int J Oral Maxillofac Implants 2016;31:304-9.
  38. Salazar Marocho SM, Studart AR, Bottino MA, Bona AD. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent Mater 2010;26:483-90. https://doi.org/10.1016/j.dental.2010.01.007
  39. Mair LH, Stolarski TA, Vowles RW, Lloyd CH. Wear: mechanisms, manifestations and measurement. Report of a workshop. J Dent 1996;24:141-8. https://doi.org/10.1016/0300-5712(95)00043-7
  40. Kim JW, Kim JH, Thompson VP, Zhang Y. Sliding contact fatigue damage in layered ceramic structures. J Dent Res 2007;86:1046-50. https://doi.org/10.1177/154405910708601105
  41. Preis V, Behr M, Handel G, Schneider-Feyrer S, Hahnel S, Rosentritt M. Wear performance of dental ceramics after grinding and polishing treatments. J Mech Behav Biomed Mater 2012;10:13-22. https://doi.org/10.1016/j.jmbbm.2012.03.002
  42. Aurelio IL, Dorneles LS, May LG. Extended glaze firing on ceramics for hard machining: Crack healing, residual stresses, optical and microstructural aspects. Dent Mater 2017;33:226-40. https://doi.org/10.1016/j.dental.2016.12.002
  43. Preis V, Grumser K, Schneider-Feyrer S, Behr M, Rosentritt M. Cycle-dependent in vitro wear performance of dental ceramics after clinical surface treatments. J Mech Behav Biomed Mater 2016;53:49-58. https://doi.org/10.1016/j.jmbbm.2015.08.009
  44. Hussien AN, Rayyan MM, Sayed NM, Segaan LG, Goodacre CJ, Kattadiyil MT. Effect of screw-access channels on the fracture resistance of 3 types of ceramic implant-supported crowns. J Prosthet Dent 2016;116:214-20. https://doi.org/10.1016/j.prosdent.2015.12.016
  45. Rosentritt M, Hagemann A, Hahnel S, Behr M, Preis V. In vitro performance of zirconia and titanium implant/abutment systems for anterior application. J Dent 2014;42:1019-26. https://doi.org/10.1016/j.jdent.2014.03.010
  46. Preis V, Kammermeier A, Handel G, Rosentritt M. In vitro performance of two-piece zirconia implant systems for anterior application. Dent Mater 2016;32:765-74. https://doi.org/10.1016/j.dental.2016.03.028
  47. de Kok P, Kleverlaan CJ, de Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent 2015;114:59-66. https://doi.org/10.1016/j.prosdent.2014.10.015
  48. Pjetursson BE, Karoussis I, Burgin W, Bragger U, Lang NP. Patients' satisfaction following implant therapy. A 10-year prospective cohort study. Clin Oral Implants Res 2005;16:185-93. https://doi.org/10.1111/j.1600-0501.2004.01094.x
  49. Kammermeier A, Rosentritt M, Behr M, Schneider-Feyrer S, Preis V. In vitro performance of one- and two-piece zirconia implant systems for anterior application. J Dent 2016;53:94-101. https://doi.org/10.1016/j.jdent.2016.08.004
  50. Ferrario VF, Sforza C, Zanotti G, Tartaglia GM. Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent 2004;32:451-7. https://doi.org/10.1016/j.jdent.2004.02.009

피인용 문헌

  1. Stability of screw‐retention in two‐piece zirconia implants: An in vitro study vol.31, pp.7, 2018, https://doi.org/10.1111/clr.13597
  2. In vitro performance and fracture resistance of pressed or CAD/CAM milled ceramic implant-supported screw-retained or cemented anterior FDPs vol.65, pp.2, 2018, https://doi.org/10.2186/jpr.jpor_2019_403
  3. In Vitro Fatigue and Fracture Load of Monolithic Ceramic Crowns Supported by Hybrid Abutment vol.15, pp.1, 2018, https://doi.org/10.2174/1874210602115010664