DOI QR코드

DOI QR Code

The effect of zirconia surface architecturing technique on the zirconia/veneer interfacial bond strength

  • Her, Soo-Bok (Seoul Meerae Dental Clinic) ;
  • Kim, Kyoung Hun (Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Sang Eun (Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine) ;
  • Park, Eun-Jin (Department of Dentistry, School of Medicine, Ewha Womans University)
  • Received : 2017.07.19
  • Accepted : 2018.05.08
  • Published : 2018.08.31

Abstract

PURPOSE. The purpose of this study was to evaluate the effect of the zirconia surface architecturing technique (ZSAT) on the bond strength between veneering porcelain and zirconia ceramic. MATERIALS AND METHODS. 20 sintered zirconia ceramic specimens were used to determine the optimal surface treatment time, and were randomly divided into 4 groups based on treatment times of 0, 1, 2, and 3 hours. After etching with a special solution, the surface was observed under scanning electron microscope, and then the porcelain was veneered for scratch testing. Sixty 3 mol% yttria-stabilized tetragonal zirconia polycrystal ceramic blocks were used for tensile strength testing; 30 of these blocks were surface treated and the rest were not. Statistical analysis was performed using ANOVA, the Tukey post-hoc test, and independent t-test, and the level of significance was set at ${\alpha}=.05$. RESULTS. The surface treatment of the zirconia using ZSAT increased the surface roughness, and tensile strength test results showed that the ZSAT group significantly increased the bond strength between zirconia and veneering porcelain compared to the untreated group (36 MPa vs. 30 MPa). Optimal etching time was determined to be 2 hours based on the scratch test results. CONCLUSION. ZSAT increases the surface roughness of zirconia, and this might contribute to the increased interfacial bond strength between zirconia and veneering porcelain.

Keywords

References

  1. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  2. Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27:535-43. https://doi.org/10.1016/j.biomaterials.2005.07.034
  3. Koutayas SO, Vagkopoulou T, Pelekanos S, Koidis P, Strub JR. Zirconia in dentistry: part 2. Evidence-based clinical breakthrough. Eur J Esthet Dent 2009;4:348-80.
  4. Cho JH, Kim SJ, Shim JS, Lee KW. Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements. J Adv Prosthodont 2017;9:77-84. https://doi.org/10.4047/jap.2017.9.2.77
  5. Su N, Yue L, Liao Y, Liu W, Zhang H, Li X, Wang H, Shen J. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin. J Adv Prosthodont 2015;7:214-23. https://doi.org/10.4047/jap.2015.7.3.214
  6. Mosharraf R, Rismanchian M, Savabi O, Ashtiani AH. Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics. J Adv Prosthodont 2011;3:221-8. https://doi.org/10.4047/jap.2011.3.4.221
  7. Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  8. Molin MK, Karlsson SL. Five-year clinical prospective evaluation of zirconia-based Denzir 3-unit FPDs. Int J Prosthodont 2008;21:223-7.
  9. Sorrentino R, De Simone G, Tete S, Russo S, Zarone F. Fiveyear prospective clinical study of posterior three-unit zirconia-based fixed dental prostheses. Clin Oral Investig 2012;16:977-85. https://doi.org/10.1007/s00784-011-0575-2
  10. Ortorp A, Kihl ML, Carlsson GE. A 5-year retrospective study of survival of zirconia single crowns fitted in a private clinical setting. J Dent 2012;40:527-30. https://doi.org/10.1016/j.jdent.2012.02.011
  11. Vigolo P, Mutinelli S. Evaluation of zirconium-oxide-based ceramic single-unit posterior fixed dental prostheses (FDPs) generated with two CAD/CAM systems compared to porcelain-fused-to-metal single-unit posterior FDPs: a 5-year clini-cal prospective study. J Prosthodont 2012;21:265-9. https://doi.org/10.1111/j.1532-849X.2011.00825.x
  12. Raigrodski AJ, Yu A, Chiche GJ, Hochstedler JL, Mancl LA, Mohamed SE. Clinical efficacy of veneered zirconium dioxide-based posterior partial fixed dental prostheses: five-year results. J Prosthet Dent 2012;108:214-22. https://doi.org/10.1016/S0022-3913(12)60165-6
  13. Schmitter M, Mussotter K, Rammelsberg P, Gabbert O, Ohlmann B. Clinical performance of long-span zirconia frameworks for fixed dental prostheses: 5-year results. J Oral Rehabil 2012;39:552-7. https://doi.org/10.1111/j.1365-2842.2012.02311.x
  14. Sax C, Hammerle CH, Sailer I. 10-year clinical outcomes of fixed dental prostheses with zirconia frameworks. Int J Comput Dent 2011;14:183-202.
  15. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010;37:641-52.
  16. Mackert JR Jr. Effects of thermally induced changes on porcelain-metal compatibility. In: Preston JD, ed. Perspectives in dental ceramics. Proceedings of the fourth international symposium on ceramics. Chicago: Quintessence; 1988. p. 53-64.
  17. Isgro G, Pallav P, van der Zel JM, Feilzer AJ. The influence of the veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic. J Prosthet Dent 2003;90:465-73. https://doi.org/10.1016/j.prosdent.2003.08.003
  18. Murphy KM, Carter JM, Johnson RR, Sorensen SE. Determination of residual stresses in denture base polymers using the layer removal technique. J Biomed Mater Res 1985;19:971-80. https://doi.org/10.1002/jbm.820190808
  19. de Kler M, de Jager N, Meegdes M, van der Zel JM. Influence of thermal expansion mismatch and fatigue loading on phase changes in porcelain veneered Y-TZP zirconia discs. J Oral Rehabil 2007;34:841-7. https://doi.org/10.1111/j.1365-2842.2006.01675.x
  20. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont 2008;17:401-8. https://doi.org/10.1111/j.1532-849X.2008.00306.x
  21. Fischer J, Stawarzcyk B, Trottmann A, Hammerle CH. Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dent Mater 2009;25:419-23. https://doi.org/10.1016/j.dental.2008.09.003
  22. Gostemeyer G, Jendras M, Dittmer MP, Bach FW, Stiesch M, Kohorst P. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomater 2010;6:4532-8. https://doi.org/10.1016/j.actbio.2010.06.026
  23. Guazzato M, Proos K, Quach L, Swain MV. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials 2004;25:5045-52. https://doi.org/10.1016/j.biomaterials.2004.02.036
  24. White SN, Caputo AA, Vidjak FM, Seghi RR. Moduli of rupture of layered dental ceramics. Dent Mater 1994;10:52-8. https://doi.org/10.1016/0109-5641(94)90022-1
  25. Zeng K, Oden A, Rowcliffe D. Evaluation of mechanical properties of dental ceramic core materials in combination with porcelains. Int J Prosthodont 1998;11:183-9.
  26. Thompson GA. Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater 2000;16:235-43. https://doi.org/10.1016/S0109-5641(00)00005-1
  27. Ozkurt Z, Kazazoglu E. Clinical success of zirconia in dental applications. J Prosthodont 2010;19:64-8. https://doi.org/10.1111/j.1532-849X.2009.00513.x
  28. Taskonak B, Borges GA, Mecholsky JJ Jr, Anusavice KJ, Moore BK, Yan J. The effects of viscoelastic parameters on residual stress development in a zirconia/glass bilayer dental ceramic. Dent Mater 2008;24:1149-55. https://doi.org/10.1016/j.dental.2008.01.004
  29. Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004;91:349-55. https://doi.org/10.1016/j.prosdent.2004.02.009
  30. Fischer J, Grohmann P, Stawarczyk B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J 2008;27:448-54. https://doi.org/10.4012/dmj.27.448
  31. Nakamura T, Wakabayashi K, Zaima C, Nishida H, Kinuta S, Yatani H. Tensile bond strength between tooth-colored porcelain and sandblasted zirconia framework. J Prosthodont Res 2009;53:116-9. https://doi.org/10.1016/j.jpor.2009.02.007
  32. Ozkurt Z, Kazazoglu E, Unal A. In vitro evaluation of shear bond strength of veneering ceramics to zirconia. Dent Mater J 2010;29:138-46. https://doi.org/10.4012/dmj.2009-065
  33. Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res 2007;18:218-31. https://doi.org/10.1111/j.1600-0501.2007.01460.x
  34. Fischer J, Grohmann P, Stawarczyk B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J 2008;27:448-54. https://doi.org/10.4012/dmj.27.448
  35. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2006;22:857-63. https://doi.org/10.1016/j.dental.2005.11.014
  36. Sundh A, Sjogren G. A comparison of fracture strength of yttrium-oxide- partially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil 2004;31:682-8. https://doi.org/10.1111/j.1365-2842.2004.01284.x

Cited by

  1. Comparative Effectiveness of Multiple Laser Scanning and Conventional Techniques on Zirconia Shear Bond Strength vol.9, pp.7, 2018, https://doi.org/10.3390/coatings9070422
  2. Surface characterization of different surface treatments associations with plasma and bonding analysis of Y-TZP and the veneering ceramic vol.37, pp.12, 2018, https://doi.org/10.1016/j.dental.2021.10.004