DOI QR코드

DOI QR Code

A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates

  • Vosoughi, Ali R. (Department of Civil and Environmental Engineering, School of Engineering, Shiraz University) ;
  • Malekzadeh, Parviz (Department of Mechanical Engineering, School of Engineering, Persian Gulf University) ;
  • Topal, Umut (Department of Civil Engineering, Faculty of Technology, Karadeniz Technical University) ;
  • Dede, Tayfun (Department of Civil Engineering, Karadeniz Technical University)
  • Received : 2018.04.08
  • Accepted : 2018.06.09
  • Published : 2018.08.25

Abstract

The differential quadrature (DQ) and teaching-learning based optimization (TLBO) methods are coupled to introduce a hybrid numerical method for maximizing fundamental natural frequency of laminated composite skew plates. The fiber(s) orientations are selected as design variable(s). The first-order shear deformation theory (FSDT) is used to obtain the governing equations of the plate. The equations of motion and the related boundary conditions are discretized in space domain by employing the DQ method. The discretized equations are transferred from the time domain into the frequency domain to obtain the fundamental natural frequency. Then, the DQ solution is coupled with the TLBO method to find the maximum frequency of the plate and its related optimum stacking sequences of the laminate. Convergence and applicability of the proposed method are shown and the optimum fundamental frequency parameter of the plates with different skew angle, boundary conditions, number of layers and aspect ratio are obtained. The obtained results can be used as a benchmark for further studies.

Keywords

References

  1. Apalak, M.K., Yildirim, M. and Ekici, R. (2008), "Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions", Compos. Sci. Tech., 68, 537-550. https://doi.org/10.1016/j.compscitech.2007.06.031
  2. Apalak, K.M., Karaboga, D. and Akay, B. (2014), "The Artificial Bee Colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates", Eng. Opt., 46(3), 420-437. https://doi.org/10.1080/0305215X.2013.776551
  3. Baghlani, A. and Makiabadi, M.H. (2013), "Teaching-learningbased optimization algorithm for shape and size optimization of truss structures with dynamic frequency constraints", IJST, Transac. Civil Eng., 37(C+), 409-421.
  4. Darabi, A. and Vosoughi, A.R. (2016), "A hybrid inverse method for small scale parameter estimation of FG nanobeams", Steel Compos. Struct., Int. J., 20(5), 1119-1131. https://doi.org/10.12989/scs.2016.20.5.1119
  5. Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017), "Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure", ASCE J. Aerosp. Eng., 30, 04017045. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000756
  6. Honda, S., Narita Y.N. and Sasaki, K.S. (2009), "Discrete optimization for vibration design of composite plates by using lamination parameters", Adv. Compos. Mater., 18(4), 297-314. https://doi.org/10.1163/156855109X434739
  7. Honda, S., Kumagai, T., Tomihashi, K. and Narita, Y. (2013), "Frequency maximization of laminated sandwich plates under general boundary conditions using layerwise optimization method with refined zigzag theory", J. Sound Vib., 332, 6451-6462. https://doi.org/10.1016/j.jsv.2013.07.010
  8. Kam, T.Y. and Lai, F.M. (1995), "Design of laminated composite plates for optimal dynamic characteristics using a constrained global optimization technique", Comput. Method Appl. Mech. Eng., 120, 389-402. https://doi.org/10.1016/0045-7825(94)00063-S
  9. Karakaya, S. and Soykasap, O. (2011), "Natural frequency and buckling optimization of laminated hybrid composite plates using genetic algorithm and simulated annealing", Struct. Multidiscip. Opt., 43, 61-72. https://doi.org/10.1007/s00158-010-0538-2
  10. Khalili, A. and Vosoughi, A.R. (2018), "An approach for the Pasternak elastic foundation parameters estimation of beams using simulated frequencies", Inv. Prob. Sci. Eng., 26(8), 1079-1093. https://doi.org/10.1080/17415977.2017.1377707
  11. Malekzadeh, P. and Vosoughi, A.R. (2008), "Large amplitude free vibration analysis of composite plates with rotationally restrained edges using DQM", J. Rein. Plast. Compos., 27(4), 409-430. https://doi.org/10.1177/0731684407084123
  12. Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlin. Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
  13. Malekzadeh, P., Vosoughi, A.R., Sadeghpour, M. and Vosoughi, H.R. (2014), "Thermal buckling optimization of temperaturedependent laminated composite skew plates", ASCE J. Aerosp. Eng., 27, 64-55. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000220
  14. Narita, Y. (2003), "Layerwise optimization for the maximum fundamental frequency of laminated composite plates", J. Sound Vib., 263,1005-1016. https://doi.org/10.1016/S0022-460X(03)00270-0
  15. Narita, Y. (2006), "Maximum frequency design of laminated plates with mixed boundary conditions", Int. J. Solid Struct., 43, 4342-4356. https://doi.org/10.1016/j.ijsolstr.2005.06.104
  16. Narita, Y. and Hodgkinson, J.M. (2005), "Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates", Compos. Struct., 69, 127-135. https://doi.org/10.1016/j.compstruct.2004.05.021
  17. Narita, Y. and Robinson, P. (2006), "Maximizing the fundamental frequency of laminated cylindrical panels using layerwise optimization", Int. J. Mech. Sci., 48, 1516-1524. https://doi.org/10.1016/j.ijmecsci.2006.06.008
  18. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43, 303-315. https://doi.org/10.1016/j.cad.2010.12.015
  19. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates Theory and Analysis, CRC, Boca Raton, FL, USA.
  20. Sadr, M.H. and Ghashochi Bargh, H. (2012), "Optimization of laminated composite plates for maximum fundamental frequency using Elitist-Genetic algorithm and finite strip method", J. Glob. Opt., 54, 707-728. https://doi.org/10.1007/s10898-011-9787-x
  21. Sahoo, S.S., Panda, S.K. and Sen, D. (2016), "Effect of delamination on static and dynamic behavior of laminated composite plate", AIAA J., 54(8), 2530-2544. https://doi.org/10.2514/1.J054908
  22. Sahoo, S.S., Panda, S.K., Mahapatra, T.R. and Hirwani, C.K. (2018), "Numerical Analysis of transient responses of delaminated layered structure using different mid-plane theories and experimental validation", Iranian J. Sci. Tech., Transac. Mech. Eng., [In press]
  23. Shafei, E. and Shirzad, A. (2017), "Ant colony optimization for dynamic stability of laminated composite plates", Steel Compos. Struct., Int. J., 25(1), 105-116.
  24. Topal, U. (2012), "Frequency optimization for laminated composite plates using extended layerwise approach", Steel Compos. Struct., Int. J., 12(6), 541-548. https://doi.org/10.12989/scs.2012.12.6.541
  25. Topal, U. and Uzman, U. (2008), "Frequency optimization of laminated composite angle-ply plates with circular hole", Mater. Des., 29, 1512-1517. https://doi.org/10.1016/j.matdes.2008.03.002
  26. Topal, U. and Uzman, U. (2009), "Frequency optimization of laminated skew plates", Mater. Des., 30, 3180-3185. https://doi.org/10.1016/j.matdes.2008.11.007
  27. Vosoughi, A.R. (2014), "Thermal postbuckling analysis of functionally graded beams", J. Thermal Stress., 37(4), 532-544. https://doi.org/10.1080/01495739.2013.872462
  28. Vosoughi, A.R. (2015), "A developed hybrid method for crack identification of beams", Smart Struct. Syst., Int. J., 16(3), 401-414. https://doi.org/10.12989/sss.2015.16.3.401
  29. Vosoughi, A.R. (2016), "Nonlinear free vibration of functionally graded nanobeams on nonlinear elastic foundation", IJST, Transac. Civil Eng., 40(1), 23-32.
  30. Vosoughi, A.R. and Anjabin, N. (2017), "Dynamic moving load identification of laminated composite beams using a hybrid FETMDQ-GAs method", Inv. Prob. Sci. Eng., 25(11), 1639-1652. https://doi.org/10.1080/17415977.2016.1275613
  31. Vosoughi, A.R. and Darabi, A. (2017), "A new hybrid CG-GAs approach for high sensitive optimization problems: With application for parameters estimation of FG nanobeams", Appl. Soft Comput., 52, 220-230. https://doi.org/10.1016/j.asoc.2016.12.016
  32. Vosoughi, A.R. and Gerist, S. (2014), "New hybrid FE-PSO-CGAs sensitivity base technique for damage detection of laminated composite beams", Compos. Struct., 118, 68-73. https://doi.org/10.1016/j.compstruct.2014.07.012
  33. Vosoughi, A.R. and Nikoo, M.R. (2015), "Maximum fundamental frequency and thermal buckling temperature of laminated composite plates by a new hybrid multi-objective optimization technique", Thin-Wall. Struct., 95, 408-415. https://doi.org/10.1016/j.tws.2015.07.014
  34. Vosoughi, A.R., Dehghani Forkhorji, H. and Roohbakhsh, H. (2016), "Maximum fundamental frequency of thick laminated composite plates by a hybrid optimization method", Compos. B: Eng., 86, 254-260. https://doi.org/10.1016/j.compositesb.2015.10.010
  35. Vosoughi, A.R., Darabi, A. and Dehghani Forkhorji, H. (2017), "Optimum stacking sequences of thick laminated composite plates for maximizing buckling load using FE-GAs-PSO", Compos. Struct., 159, 361-367. https://doi.org/10.1016/j.compstruct.2016.09.085
  36. Vosoughi, A.R., Anjabin, N. and Amiri, S.M. (2018a), "Thermal post-buckling analysis of moderately thick nanobeams", IJST, Transac. Civil Eng., 42(1), 33-38.
  37. Vosoughi, A.R., Malekzadeh, P. and Roosta, H.R. (2018b), "A hybrid numerical method for trade-off optimal relation between mass and fundamental natural frequency of moderately thick laminated composite beams", Mater. Today Commun., 16, 42-55. https://doi.org/10.1016/j.mtcomm.2018.04.011