References
- Apalak, M.K., Yildirim, M. and Ekici, R. (2008), "Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions", Compos. Sci. Tech., 68, 537-550. https://doi.org/10.1016/j.compscitech.2007.06.031
- Apalak, K.M., Karaboga, D. and Akay, B. (2014), "The Artificial Bee Colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates", Eng. Opt., 46(3), 420-437. https://doi.org/10.1080/0305215X.2013.776551
- Baghlani, A. and Makiabadi, M.H. (2013), "Teaching-learningbased optimization algorithm for shape and size optimization of truss structures with dynamic frequency constraints", IJST, Transac. Civil Eng., 37(C+), 409-421.
- Darabi, A. and Vosoughi, A.R. (2016), "A hybrid inverse method for small scale parameter estimation of FG nanobeams", Steel Compos. Struct., Int. J., 20(5), 1119-1131. https://doi.org/10.12989/scs.2016.20.5.1119
- Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017), "Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure", ASCE J. Aerosp. Eng., 30, 04017045. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000756
- Honda, S., Narita Y.N. and Sasaki, K.S. (2009), "Discrete optimization for vibration design of composite plates by using lamination parameters", Adv. Compos. Mater., 18(4), 297-314. https://doi.org/10.1163/156855109X434739
- Honda, S., Kumagai, T., Tomihashi, K. and Narita, Y. (2013), "Frequency maximization of laminated sandwich plates under general boundary conditions using layerwise optimization method with refined zigzag theory", J. Sound Vib., 332, 6451-6462. https://doi.org/10.1016/j.jsv.2013.07.010
- Kam, T.Y. and Lai, F.M. (1995), "Design of laminated composite plates for optimal dynamic characteristics using a constrained global optimization technique", Comput. Method Appl. Mech. Eng., 120, 389-402. https://doi.org/10.1016/0045-7825(94)00063-S
- Karakaya, S. and Soykasap, O. (2011), "Natural frequency and buckling optimization of laminated hybrid composite plates using genetic algorithm and simulated annealing", Struct. Multidiscip. Opt., 43, 61-72. https://doi.org/10.1007/s00158-010-0538-2
- Khalili, A. and Vosoughi, A.R. (2018), "An approach for the Pasternak elastic foundation parameters estimation of beams using simulated frequencies", Inv. Prob. Sci. Eng., 26(8), 1079-1093. https://doi.org/10.1080/17415977.2017.1377707
- Malekzadeh, P. and Vosoughi, A.R. (2008), "Large amplitude free vibration analysis of composite plates with rotationally restrained edges using DQM", J. Rein. Plast. Compos., 27(4), 409-430. https://doi.org/10.1177/0731684407084123
- Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlin. Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
- Malekzadeh, P., Vosoughi, A.R., Sadeghpour, M. and Vosoughi, H.R. (2014), "Thermal buckling optimization of temperaturedependent laminated composite skew plates", ASCE J. Aerosp. Eng., 27, 64-55. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000220
- Narita, Y. (2003), "Layerwise optimization for the maximum fundamental frequency of laminated composite plates", J. Sound Vib., 263,1005-1016. https://doi.org/10.1016/S0022-460X(03)00270-0
- Narita, Y. (2006), "Maximum frequency design of laminated plates with mixed boundary conditions", Int. J. Solid Struct., 43, 4342-4356. https://doi.org/10.1016/j.ijsolstr.2005.06.104
- Narita, Y. and Hodgkinson, J.M. (2005), "Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates", Compos. Struct., 69, 127-135. https://doi.org/10.1016/j.compstruct.2004.05.021
- Narita, Y. and Robinson, P. (2006), "Maximizing the fundamental frequency of laminated cylindrical panels using layerwise optimization", Int. J. Mech. Sci., 48, 1516-1524. https://doi.org/10.1016/j.ijmecsci.2006.06.008
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43, 303-315. https://doi.org/10.1016/j.cad.2010.12.015
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates Theory and Analysis, CRC, Boca Raton, FL, USA.
- Sadr, M.H. and Ghashochi Bargh, H. (2012), "Optimization of laminated composite plates for maximum fundamental frequency using Elitist-Genetic algorithm and finite strip method", J. Glob. Opt., 54, 707-728. https://doi.org/10.1007/s10898-011-9787-x
- Sahoo, S.S., Panda, S.K. and Sen, D. (2016), "Effect of delamination on static and dynamic behavior of laminated composite plate", AIAA J., 54(8), 2530-2544. https://doi.org/10.2514/1.J054908
- Sahoo, S.S., Panda, S.K., Mahapatra, T.R. and Hirwani, C.K. (2018), "Numerical Analysis of transient responses of delaminated layered structure using different mid-plane theories and experimental validation", Iranian J. Sci. Tech., Transac. Mech. Eng., [In press]
- Shafei, E. and Shirzad, A. (2017), "Ant colony optimization for dynamic stability of laminated composite plates", Steel Compos. Struct., Int. J., 25(1), 105-116.
- Topal, U. (2012), "Frequency optimization for laminated composite plates using extended layerwise approach", Steel Compos. Struct., Int. J., 12(6), 541-548. https://doi.org/10.12989/scs.2012.12.6.541
- Topal, U. and Uzman, U. (2008), "Frequency optimization of laminated composite angle-ply plates with circular hole", Mater. Des., 29, 1512-1517. https://doi.org/10.1016/j.matdes.2008.03.002
- Topal, U. and Uzman, U. (2009), "Frequency optimization of laminated skew plates", Mater. Des., 30, 3180-3185. https://doi.org/10.1016/j.matdes.2008.11.007
- Vosoughi, A.R. (2014), "Thermal postbuckling analysis of functionally graded beams", J. Thermal Stress., 37(4), 532-544. https://doi.org/10.1080/01495739.2013.872462
- Vosoughi, A.R. (2015), "A developed hybrid method for crack identification of beams", Smart Struct. Syst., Int. J., 16(3), 401-414. https://doi.org/10.12989/sss.2015.16.3.401
- Vosoughi, A.R. (2016), "Nonlinear free vibration of functionally graded nanobeams on nonlinear elastic foundation", IJST, Transac. Civil Eng., 40(1), 23-32.
- Vosoughi, A.R. and Anjabin, N. (2017), "Dynamic moving load identification of laminated composite beams using a hybrid FETMDQ-GAs method", Inv. Prob. Sci. Eng., 25(11), 1639-1652. https://doi.org/10.1080/17415977.2016.1275613
- Vosoughi, A.R. and Darabi, A. (2017), "A new hybrid CG-GAs approach for high sensitive optimization problems: With application for parameters estimation of FG nanobeams", Appl. Soft Comput., 52, 220-230. https://doi.org/10.1016/j.asoc.2016.12.016
- Vosoughi, A.R. and Gerist, S. (2014), "New hybrid FE-PSO-CGAs sensitivity base technique for damage detection of laminated composite beams", Compos. Struct., 118, 68-73. https://doi.org/10.1016/j.compstruct.2014.07.012
- Vosoughi, A.R. and Nikoo, M.R. (2015), "Maximum fundamental frequency and thermal buckling temperature of laminated composite plates by a new hybrid multi-objective optimization technique", Thin-Wall. Struct., 95, 408-415. https://doi.org/10.1016/j.tws.2015.07.014
- Vosoughi, A.R., Dehghani Forkhorji, H. and Roohbakhsh, H. (2016), "Maximum fundamental frequency of thick laminated composite plates by a hybrid optimization method", Compos. B: Eng., 86, 254-260. https://doi.org/10.1016/j.compositesb.2015.10.010
- Vosoughi, A.R., Darabi, A. and Dehghani Forkhorji, H. (2017), "Optimum stacking sequences of thick laminated composite plates for maximizing buckling load using FE-GAs-PSO", Compos. Struct., 159, 361-367. https://doi.org/10.1016/j.compstruct.2016.09.085
- Vosoughi, A.R., Anjabin, N. and Amiri, S.M. (2018a), "Thermal post-buckling analysis of moderately thick nanobeams", IJST, Transac. Civil Eng., 42(1), 33-38.
- Vosoughi, A.R., Malekzadeh, P. and Roosta, H.R. (2018b), "A hybrid numerical method for trade-off optimal relation between mass and fundamental natural frequency of moderately thick laminated composite beams", Mater. Today Commun., 16, 42-55. https://doi.org/10.1016/j.mtcomm.2018.04.011