References
- Agarwal, J., Blockley, D. and Woodman, N. (2001), "Vulnerability of 3-dimensional trusses", Struct. Safety, 23(3), 203-220. https://doi.org/10.1016/S0167-4730(01)00013-3
- Artar, M. (2016), "A comparative study on optimum design of multi-element truss structures", Steel Compos. Struct., Int. J., 22(3), 521-535. https://doi.org/10.12989/scs.2016.22.3.521
- Borri, C. and Spinelli, P. (1988), "Buckling and post-buckling behavior of single layer reticulated shells affected by random imperfections", Comput. Struct., 30(4), 937-943. https://doi.org/10.1016/0045-7949(88)90131-9
- Cai, J., Zhou, Y., Xu, Y. and Feng, J. (2013), "Non-linear stability analysis of a hybrid barrel vault roof", Steel Compos. Struct., Int. J., 14(6), 571-586. https://doi.org/10.12989/scs.2013.14.6.571
- Cai, J., Zhang, Q., Jiang, Y., Xu, Y., Feng, J. and Deng, X. (2017a), "Nonlinear stability analysis of a radially retractable hybrid grid shell in the closed position", Steel Compos. Struct., Int. J., 24(3), 287-296.
- Cai, J., Liu, Y., Feng, J. and Tu, Y. (2017b), "Nonlinear stability analysis of a radially retractable suspen-dome", Adv. Steel Constr., 13(2), 117-131.
- Crisfield, M.A. (1983), "An arc-length method including line searches and accelerations", Int. J. Numer. Methods Eng., 19(9), 1269-1289. https://doi.org/10.1002/nme.1620190902
- Dubina, D. (1992), "Computation models and numerical solution procedures for nonlinear analysis of single layer lattice shells", Int. J. Space Struct., 7(4), 321-333. https://doi.org/10.1177/026635119200700408
- England, J., Agarwal, J. and Blockley, D. (2008), "The vulnerability of structures to unforeseen events", Comput. Struct., 86(10), 1042-1051. https://doi.org/10.1016/j.compstruc.2007.05.039
- GB50017-2003 (2003), Code for design of steel structures, Ministry of housing and urban-rural development of the People's Republic of China; Beijing, China.
- GB/T17395-2008 (2008), Dimensions, shape, mass and tolerances of seamless steel tubes, Standardization administration of the People's Republic of China; Beijing, China.
- Gen, M. and Cheng, R. (1996), "A survey of penalty techniques in genetic algorithms", Proceedings of 1996 IEEE International Conference on Evolutionary Computation, IEEE, Nagoya, Japan, May.
- Ghasemi, A.R. and Hajmohammad, M.H. (2015), "Minimumweight design of stiffened shell under hydrostatic pressure by genetic algorithm", Steel Compos. Struct., Int. J., 19(1), 75-92. https://doi.org/10.12989/scs.2015.19.1.075
- Gholizadeh, S. and Barati, H. (2014), "Topology optimization of nonlinear single layer domes by a new metaheuristic", Steel Compos. Struct., Int. J., 16(6), 681-701. https://doi.org/10.12989/scs.2014.16.6.681
- Gioncu, V. (1995), "Buckling of reticulated shells: state-of-theart", Int. J. Space Struct., 10(1), 1-46. https://doi.org/10.1177/026635119501000101
- JGJ7-2010 (2010), Technical specification for space frame structures, Ministry of housing and urban-rural development of the People's Republic of China; Beijing, China.
- Kamat, M.P., Khott, N.S., Venkayyat, V.B., Kamat, M.P., Khott, N.S. and Venkayyat, V.B. (1984), "Optimization of shallow trusses against limit point instability", AIAA J., 22(3), 403-408. https://doi.org/10.2514/3.48461
- Kashani, M. and Croll, J. (1994), "Lower bounds for overall buckling of spherical space domes", J. Eng. Mech., 120(5), 949-970. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:5(949)
- Khot, N.S. (1983), "Nonlinear analysis of optimized structure with constraints on system stability", AIAA J., 21(8), 1181-1186. https://doi.org/10.2514/3.8224
- Kloppel, K. and Schardt, R. (1962), "Zur berechnung von netzkuppeln", Der Stahlbau, 31(5), 129-136. [In German]
- Levy, R. (1994a), "Optimal design of trusses for overall stability", Comput. Struct., 53(5), 1133-1138. https://doi.org/10.1016/0045-7949(94)90160-0
- Levy, R. (1994b), "Optimization for buckling with exact geometries", Comput. Struct., 53(5), 1139-1144. https://doi.org/10.1016/0045-7949(94)90161-9
- Li, P. and Wu, M. (2017), "Stabilities of cable-stiffened cylindrical single-layer latticed shells", Steel Compos. Struct., Int. J., 24(5), 591-602.
- Liew, J.R., Punniyakotty, N.M. and Shanmugam, N.E. (1997), "Advanced analysis and design of spatial structures", J. Constr. Steel Res., 42(1), 21-48. https://doi.org/10.1016/S0143-974X(97)00005-9
- Liu, W. and Ye, J. (2014), "Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm", J. Constr. Steel Res., 97, 59-68. https://doi.org/10.1016/j.jcsr.2014.01.015
- Lu, M. and Ye, J. (2017), "Guided genetic algorithm for dome optimization against instability with discrete variables", J. Constr. Steel Res., 139, 149-156. https://doi.org/10.1016/j.jcsr.2017.09.019
- Lu, Z., Yu, Y., Woodman, N.J. and Blockley, D.I. (1999), "A theory of structural vulnerability", Struct. Engineer, 77(18), 17-24.
- Nanhai, Z. and Jihong, Y. (2014), "Structural vulnerability of a single-layer dome based on its form", J. Eng. Mech., 140(1), 112-127. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000636
- Papadrakakis, M. (1983), "Inelastic post-buckling analysis of trusses", J. Struct. Eng., 109(9), 2129-2147. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:9(2129)
- Pyrz, M. (1990), "Discrete optimization of geometrically nonlinear truss structures under stability constraints", Struct. Optimiz., 2(2), 125-131. https://doi.org/10.1007/BF01745460
- Ragon, S.A., Gurdal, Z. and Watson, L.T. (2002), "A comparison of three algorithms for tracing nonlinear equilibrium paths of structural systems", Int. J. Solids Struct., 39(3), 689-698. https://doi.org/10.1016/S0020-7683(01)00195-0
- Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solids Struct., 15(7), 529-551. https://doi.org/10.1016/0020-7683(79)90081-7
- Riks, E. (1984), "Some computational aspects of the stability analysis of nonlinear structures", Comput. Methods Appl. Mech. Eng., 47(3), 219-259. https://doi.org/10.1016/0045-7825(84)90078-1
- Saka, M.P. and Geem, Z.W. (2013), "Mathematical and metaheuristic applications in design optimization of steel frame structures: an extensive review", Math. Problems Eng. DOI: 10.1155/2013/271031
- Saka, M.P. and Ulker, M. (1992), "Optimum design of geometrically nonlinear space trusses", Comput. Struct., 42(3), 289-299. https://doi.org/10.1016/0045-7949(92)90025-U
- Shen, S.Z. and Chen, X. (1999), Stability of Reticulated Shells, Science Press, Beijing, China. [In Chinese]
- Starossek, U. (2007), "Typology of progressive collapse", Eng. Struct., 29(9), 2302-2307. https://doi.org/10.1016/j.engstruct.2006.11.025
- Stolpe, M. (2016), "Truss optimization with discrete design variables: A critical review", Struct. Multidiscipl. Optimiz., 53(2), 349-374. https://doi.org/10.1007/s00158-015-1333-x
- Talaslioglu, T. (2012), "Multiobjective size and topolgy optimization of dome structures", Struct. Eng. Mech., Int. J., 43(6), 795-821. https://doi.org/10.12989/sem.2012.43.6.795
- Talaslioglu, T. (2013), "Global stability-based design optimization of truss structures using multiple objectives", Sadhana, 38(1), 37-68. https://doi.org/10.1007/s12046-013-0111-y
- Wang, X., Feng, R.Q., Yan, G.R., Liu, F.C. and Xu, W.J. (2016), "Effect of joint stiffness on the stability of cable-braced grid shells", Int. J. Steel Struct., 16(4), 1123-1133. https://doi.org/10.1007/s13296-016-0041-8
- Wu, X. (1991), "Vulnerability analysis of structural systems", Ph.D. Dissertation; University of Bristol, UK.
- Wu, X., Blockley, D.I. and Woodman, N.J. (1993), "Vulnerability of structural systems part 1: rings and clusters", Civil Eng. Syst., 10(4), 301-317. https://doi.org/10.1080/02630259308970130
- Xu, L. and Ye, J. (2017), "DEM algorithm for progressive collapse simulation of single-layer reticulated domes under multi-support excitation", J. Earthq. Eng., 1-28. DOI:10.1080/13632469.2017.1309606
- Ye, J., Liu, W. and Pan, R. (2011), "Research on failure scenarios of domes based on form vulnerability", Sci. China Technol. Sci., 54(11), 2834-2853. https://doi.org/10.1007/s11431-011-4590-y
Cited by
- Numerical Analysis of Steel Geodesic Dome under Seismic Excitations vol.14, pp.16, 2018, https://doi.org/10.3390/ma14164493