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DERIVATION AND ACTOR OF CROSSED POLYMODULES

Bijan Davvaz a, ∗ and Murat Alp b

Abstract. An old result of Whitehead says that the set of derivations of a group
with values in a crossed G-module has a natural monoid structure. In this paper
we introduce derivation of crossed polymodule and actor crossed polymodules by
using Lue’s and Norrie’s constructions. We prove that the set of derivations of a
crossed polygroup has a semihypergroup structure with identity. Then, we consider
the polygroup of invertible and reversible elements of it and we obtain actor crossed
polymodule.

1. Introduction

The notion of crossed module was introduced by Whitehead in [19]. Later so

many applications of crossed module has been presented such as actor crossed mod-

ule, Crossed polymodule, etc. Actor crossed module was defined by Norrie in [16].

In Norrie’ s paper the notion of derivation plays very important role to define actor

crossed module, also see [15]. Derivations and Whitehead’s groups of derivations,

examples of derivations groups were presented by Gilbert in [12]. Crossed polymod-

ules and some examples of crossed polymodules were introduced by Davvaz and Alp

in [9]. In this paper, we use Norrie’s way to define actor crossed polymodule. First

we define a derivation and we prove some of its properties. Later, to define actor

crossed polymodule we give action and boundary homomorphism together. Finally

we present actor crossed polymodule.

Let G be a group and Ω be a non-empty set. A (left) group action is a function

τ : G× Ω → Ω that satisfies the following two axioms:

(1) τ(gh, ω) = τ(g, τ(h, ω)), for all g, h ∈ G and ω ∈ Ω,

(2) τ(e, ω) = ω, for all ω ∈ Ω.
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For ω ∈ Ω and g ∈ G, we write gω := τ(g, ω). A crossed module X = (M,G, ∂, τ)

consists of groups M and G together with a homomorphism ∂ :M → G and a (left)

action τ : G×M →M on M , satisfying the conditions:

(1) ∂( gm) = g∂(m)g−1, for all m ∈M and g ∈ G,

(2) ∂(m)m′ = mm′m−1, for all m,m′ ∈M .

In this paper, we introduce the derivation of crossed polymodule and actor crossed

polymodules by using Norrie’s way. In Section 2, we present some basic facts about

polygroups that underlie the subsequent material. In Section 3, we present the

definition of crossed polymodule and main theorem about the fundamental crossed

module derived from a crossed polymodule. The main section of the paper is Section

4. In this section, we introduce the concept of derivation of crossed polymodules

and we give some results in this respect. In particular, we prove that the set of

derivations of a crossed polygroup has a semihypergroup structure with identity.

Then, we consider the polygroup of invertible and reversible elements of it and we

obtain actor crossed polymodule.

2. Basic Facts about Polygroups

The polygroup theory is a natural generalization of the group theory. In a group

the composition of two elements is an element, while in a polygroup the composition

of two elements is a set. Polygroups have been applied in many area, such as

geometry, lattices, combinatorics and color scheme. There exists a rich bibliography:

publications appeared within 2013 can be found in “Polygroup Theory and Related

Systems” by B. Davvaz [4]. This book contains the principal definitions endowed

with examples and the basic results of the theory.

Applications of hypergroups appear in special subclasses like polygroups that

they were studied by Comer [2], also see [4, 5, 6]. Specially, Comer and Davvaz

developed the algebraic theory for polygroups. A polygroup is a completely regular,

reversible in itself multigroup.

Definition 2.1 ([2]). A polygroup is a multi-valued system M = ⟨P, ◦, e,−1 ⟩, with
e ∈ P , −1 : P −→ P , ◦ : P × P −→ P∗(P ), where the following axioms hold for all

x, y, z in P :

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z),
(2) e ◦ x = x ◦ e = x,
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(3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

In the above definition, P∗(P ) is the set of all the non-empty subsets of P , and if

x ∈ P and A,B are non-empty subsets of P , then A◦B =
∪

a∈A,b∈B
a◦b, x◦B = {x}◦B

and A ◦ x = A ◦ {x}. The following elementary facts about polygroups follow easily

from the axioms: e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e and (x−1)−1 = x. In the rest

of this section we present the facts about polygroups that underlie the subsequent

material. For further discussion of polygroups, we refer to Davvaz’s book [4]. Many

important examples of polygroups are collected in [4] such as Double coset algebra,

Prenowitz algebras, Conjugacy class polygroups, Character polygroups, Extension

of polygroups, and Chromatic polygroups. Clearly, every group is a polygroup.

If K is a non-empty subset of P , then K is called a subpolygroup of P if e ∈ K

and ⟨K, ◦, e,−1 ⟩ is a polygroup. The subpolygroup N of P is said to be normal

in P if a−1 ◦ N ◦ a ⊆ N , for every a ∈ P . If N is a normal subpolygroup of P ,

then ⟨P/N, •, N,−I ⟩ is a polygroup, where N ◦ a • B ◦ b = {N ◦ c | c ∈ N ◦ a ◦ b}
and (N ◦ a)−I = N ◦ a−1 [4]. There are several kinds of homomorphisms between

polygroups [4]. In this paper, we apply only the following kinds of homomorphism.

Definition 2.2. Let ⟨P, ·, e,−1 ⟩ and ⟨P ′, ⋆, e,−1 ⟩ be two polygroups. Let ϕ be a

mapping from P into P ′ such that ϕ(e) = e. Then ϕ is called

(1) an inclusion homomorphism if ϕ(a ◦ b) ⊆ ϕ(a) ⋆ ϕ(b), for all a, b ∈ P,

(2) a weak homomorphism if ϕ(a ◦ b) ∩ ϕ(a) ⋆ ϕ(b) ̸= ∅, for all a, b ∈ P ,

(3) a strong homomorphism if ϕ(a ◦ b) = ϕ(a) ⋆ ϕ(b), for all a, b ∈ P.

A strong homomorphism ϕ is said to be an isomorphism if ϕ is one to one and onto.

Two polygroups P and P ′ are said to be isomorphic if there is an isomorphism from

P onto P ′. The defining condition for any types of homomorphism is also valid for

sets. For instance, if ϕ is a weak homomorphism of P into P ′ and A,B are nonempty

subsets of P , then it follows that f(A ◦B) ∩ f(A) ⋆ f(B) ̸= ∅.

By using the concept of generalized permutation, in [8], Davvaz defined permu-

tation polygroups and action of a polygroup on a set. For the definition of crossed

polymodule, we need the notion of polygroup action.

Definition 2.3 ([8]). Let P = ⟨P, ◦, e,−1 ⟩ be a polygroup and Ω be a non-empty

set. A map α : P × Ω → P∗(Ω), where α(g, ω) := gω is called a (left) polygroup

action on Ω if the following axioms hold:
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(1) eω = ω,

(2) h( gω) = h◦gω, where gA =
∪
a∈A

ga and Bω =
∪
b∈B

bω, for all A ⊆ Ω and

B ⊆ P ,

(3)
∪

ω∈Ω

gω = Ω,

(4) for all g ∈ P , a ∈ gb⇒ b ∈ g−1
a.

Example 2.4. Suppose that ⟨P, ◦, e,−1 ⟩ is a polygroup. Then, P acts on itself by

conjugation. Indeed, if we consider the map α : P ×P → P∗(P ) by α(g, x) = gx :=

g ◦ x ◦ g−1, then

(1) ex = x,

(2)
h( gx) = h(g ◦ x ◦ g−1) = h ◦ g ◦ x ◦ g−1 ◦ h−1

= (h ◦ g) ◦ x ◦ (h ◦ g)−1 =
∪

b∈h◦g
(b ◦ x ◦ b−1)

=
∪

b∈h◦g

bx = h◦gx,

(3)
∪
x∈P

gx =
∪
x∈P

g ◦ x ◦ g−1 = P ,

(4) if a ∈ gb = g ◦ b ◦ g−1, then g ∈ a ◦ g ◦ b−1 and hence b−1 ∈ g−1 ◦ a−1 ◦ g.
This implies that b ∈ g−1 ◦ a ◦ g.

3. Crossed Polymodules as a Generalization
of Crossed Modules

Now, in this section, we present the notion of crossed polymodule and main results

about fundamental relation on polygroups and fundamental crossed polymodule.

Definition 3.1. A crossed polymodule X = (C,P, ∂, α) consists of polygroups

⟨C, ⋆, e, −1⟩ and ⟨P, ◦, e,−1 ⟩ together with a strong homomorphism ∂ : C → P

and a (left) action α : P × C → P∗(C) on C, satisfying the conditions:

(1) ∂( pc) = p ◦ ∂(c) ◦ p−1, for all c ∈ C and p ∈ P ,

(2) ∂(c)c′ = c ⋆ c′ ⋆ c−1, for all c, c′ ∈ C.

When we wish to emphasize the codomain P , we call X a crossed P -polymodule.

The strong homomorphism ∂ : C → P is called the boundary homomorphism.

Example 3.2. A conjugation crossed polymodule is an inclusion of a normal sub-

polygroupN of P , with action given by conjugation. In particular, for any polygroup



DERIVATION AND ACTOR OF CROSSED POLYMODULES 207

P the identity map IdP : P → P is a crossed polymodule with the action of P on

itself by conjugation. Indeed, there are two canonical ways in which a polygroup P

may be regarded as a crossed polymodule: via the identity map or via the inclusion

of the trivial subpolygroup.

Example 3.3. If C is a P -polymodule, then there is a well defined action α of

P on C. This together with the zero homomorphism yields a crossed polymodule

(C,P, 0, α).

Example 3.4. The direct product of X1×X2 of two crossed polymodules has source

C1 × C2, range P1 × P2 and boundary homomorphism ∂1 × ∂2 with P1 × P2 acting

trivially on C1 × C2.

Every crossed module is a crossed polymodule.

Let ⟨P, ◦, e,−1 ⟩ be a polygroup. We define the relation β∗P as the smallest equiv-

alence relation on P such that the quotient P/β∗P , the set of all equivalence classes,

is a group. In this case β∗P is called the fundamental equivalence relation on P and

P/β∗P is called the fundamental group. The product ⊙ in P/β∗P is defined as follows:

β∗P (x) ⊙ β∗P (y) = β∗P (z), for all z ∈ β∗P (x) ◦ β∗(y). This relation is introduced by

Koskas [13] and studied mainly by Corsini [3], Leoreanu-Fotea [14] and Freni [10, 11]

concerning hypergroups, Vougiouklis [17] concerning Hv-groups, Davvaz concerning

polygroups [7], and many others. We consider the relation βP as follows:

x βP y ⇔ there exist z1, . . . zn such that {x, y} ⊆ ◦
n∏

i=1
zi = z1 ◦ . . . ◦ zn.

Freni in [10] proved that for hypergroups β = β∗. Since polygroups are certain

subclass of hypergroups, we have β∗P = βP . The kernel of the canonical map φP :

P −→ P/β∗P is called the core of P and is denoted by ωP . Here we also denote by

ωP the unit of P/β∗P . It is easy to prove that the following statements: ωP = β∗P (e)

and β∗P (x)
−1 = β∗P (x

−1), for all x ∈ P .

Throughout the paper, we denote the binary operations of the fundamental

groups P/β∗P and C/β∗C by ⊙ and ⊗, respectively.

Now, we can consider another notion of the kernel of a strong homomorphism of

polygroups. Let ⟨P, ◦, e,−1 ⟩ and ⟨C, ⋆, e,−1 ⟩ be two polygroups and ∂ : C → P be a

strong homomorphism. The core-kernel of ∂ is defined by

ker∗∂ = {x ∈ C | ∂(x) ∈ ωP }.
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Let X = (C,P, ∂, α) be a crossed polymodule. Then, ker∗∂ is a P/∂(C)-polymodule

[9].

Proposition 3.5 ([9]). Let ⟨C, ⋆, e,−1 ⟩ and ⟨P, ◦, e,−1 ⟩ be two polygroups and let

∂ : C → P be a strong homomorphism. Then, ∂ induces a group homomorphism

D : C/β∗C → P/β∗P by setting

D(β∗C(c)) = β∗P (∂(c)), forall c ∈ C.

We say the action of P on C is productive, if for all c ∈ C and p ∈ P there exist

c1, . . . , cn in C such that cp = c1 ⋆ . . . ⋆ cn.

Example 3.6. The action defined in Example 2.4 is productive.

Let ⟨C, ⋆, e,−1 ⟩ and ⟨P, ◦, e,−1 ⟩ be two polygroups and let α : P × C → P∗(C)

be a productive action on C. We define the map ψ : P/β∗P × P/β∗C → P∗(P/β∗C) as

usual manner:

ψ(β∗P (p), β
∗
C(c)) = {β∗C(x) | x ∈

∪
y ∈ β∗

C(c)
z ∈ β∗

P (p)

zy}.

By definition of β∗C , since the action of P on C is productive, we conclude that

ψ(β∗P (p), β
∗
C(c) is singleton, i.e., we have

ψ : P/β∗P × P/β∗C → P/β∗C ,

ψ(β∗P (p), β
∗
C(c)) = β∗C(x), for all x ∈

∪
y ∈ β∗

C(c)
z ∈ β∗

P (p)

zy.

We denote ψ(β∗P (p), β
∗
C(c)) =

[β∗
P (p)] [β∗C(c)].

Proposition 3.7 ([9]). Let ⟨C, ⋆, e,−1 ⟩ and ⟨P, ◦, e,−1 ⟩ be two polygroups and let

α : P ×C → P∗(C) be a productive action on C. Then, ψ is an action of the group

P/β∗P on the group P/β∗C .

Theorem 3.8 ([1]). Let X = (C,P, ∂, α) be a crosed polymodule such that the action

of P on C is productive. Then, Xβ∗ = (C/β∗C , P/β
∗
P ,D, ψ) is a crossed module.

4. Derivation of Crossed Modules

Whitehead showed in [18] that the set of derivation of a crossed module has a

natural module structure and he characterized its group of units. In this section



DERIVATION AND ACTOR OF CROSSED POLYMODULES 209

we introduce the notion of derivation of a crossed polymodule and actor crossed

polymodules by using Norrie’s way.

Definition 4.1. Let X = (C,P, ∂, α) be a crossed polymodule. A derivation η :

P → C is a function satisfying

η(x ◦ y) = η(x) ⋆ xη(y),

for all x, y ∈ P .

Lemma 4.2. Let X = (C,P, ∂, α) be a crossed polymodule. If η : P → C is a

derivation, then

(1) η(e) = e,

(2) xη(x−1) = η(x)−1.

Proof. The proof of (1) is clear. We prove (2). Since e ∈ x ◦ x−1, η(e) ∈ η(x ◦ x−1.

By (1), we conclude that e ∈ η(x ◦ x−1). Thus, e ∈ η(x) ⋆ xη(x−1). Now, by third

condition of definition of polygroup, we obtain xη(x−1) ∈ η(x)−1 ⋆ e. Therefore,
xη(x−1) = η(x)−1. �

Theorem 4.3. Let X = (C,P, ∂, α) be a crossed polymodule and η : P → C be a

derivation. Then, the following map

η∗ : P/β∗P → C/β∗C

η∗ (β∗P (p)) = β∗C(η(p))

is a derivation for crossed module (C/β∗C , P/β
∗
P ,D, ψ).

Proof. Suppose that x, y ∈ P are arbitrary. Then, we have

η∗ (β∗P (x)⊙ β∗P (y))) = η∗ (β∗P (x ◦ y))

= β∗C(η(x ◦ y))

= β∗C (η(x) ⋆ xη(y))

= β∗C(η(x))⊗ β∗C (xη(y))

= β∗C(η(x))⊗ [β∗
P (x)] [β∗C(η(y))]

= β∗ (β∗P (x))⊗ [β∗
P (x)] [η∗ (β∗P (y))] .

�

In the following proposition, P∗(P ) and P∗(C) are semihypergroups. So, we can

consider ρ and σ as weak homomorphisms between semihypergroups.
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Proposition 4.4. Let X = (C,P, ∂, α) be a crossed polymodule and η : P → C be a

derivation. Then, η defines weak homomorphisms ρ and σ, where

(1) ρ : P → P∗(P ), such that ρ(p) = ∂(η(p)) ◦ p, for all p ∈ P ,

(2) σ : C → P∗(C), such that σ(c) = η(∂(c)) ⋆ c, for all c ∈ C.

Moreover,

(i) ρ∂(c) = ∂σ(c)

(ii) ση(p) ⊆ ηρ(p)

(iii) σ( pc) ⊇ ρ(p)(σ(c))

for all c ∈ C and p ∈ P.

C

∂

��

σ // P∗(C)

∂

��
P

@A
GF

η

/ /

ρ
// P∗(P )

BC
ED

η

oo

Proof. (1) By definition, ρ(e) = ∂(η(e))◦e. By Lemma 4.2, we obtain ρ(e) = ∂(e) =

e. Now, suppose that p1, p2 ∈ P are arbitrary. Then, we have

ρ(p1 ◦ p2) = {ρ(p) | p ∈ p1 ◦ p2}

= {∂(η(p)) ◦ p | p ∈ p1 ◦ p2}

= ∂(η(p1 ◦ p2)) ◦ p1 ◦ p2
= ∂ (η(p1) ⋆

p1η(p2)) ◦ p1 ◦ p2
= ∂(η(p1)) ◦ ∂ ( p1η(p2)) ◦ p1 ◦ p2
= ∂(η(p1)) ◦ p1 ◦ ∂(η(p2)) ◦ p−1

1 ◦ p1 ◦ p2.

Since e ∈ p−1
1 ◦ p1, we conclude that

ρ(p1 ◦ p2) ∩
(
∂(η(p1)) ◦ p1 ◦ ∂(η(p2)) ◦ p2

)
̸= ∅.

Hence, ρ(p1 ◦ p2) ∩ ρ(p1) ◦ ρ(p2) ̸= ∅. Therefore, ρ is a weak endomorphism.

(2) Clearly, σ(e) = η(∂(e))⋆e = η(∂(e)) = η(e) = e. Now, suppose that c1, c2 ∈ C

are arbitrary. Then, we have

σ(c1 ⋆ c2) = {σ(c) | c ∈ c1 ⋆ c2}

= {η(∂(c)) ⋆ c | c ∈ c1 ⋆ c2}
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= η(∂(c1 ⋆ c2)) ⋆ c1 ⋆ c2

= η(∂(c1) ◦ ∂(c2)) ⋆ c1 ⋆ c2
= η(∂(c1)) ⋆

∂(c1) η(∂(c2)) ⋆ c1 ⋆ c2

= η(∂(c1)) ⋆ c1 ⋆ η(∂(c2)) ⋆ c
−1
1 ⋆ c1 ⋆ c2

Since e ∈ c−1
1 ⋆ c1, we conclude that

σ(c1 ⋆ c2) ∩
(
η(∂(c1)) ⋆ c1 ⋆ η(∂(c2)) ⋆ c2

)
̸= ∅.

Hence, σ(c1 ⋆ c2) ∩ σ(c1) ⋆ σ(c2) ̸= ∅. Therefore, σ is a weak endomorphism.

Now, we prove (i), (ii) and (iii).

(i)

ρ∂(c) = ∂(η(∂(c))) ◦ ∂(c)

= ∂(η(∂(c)) ⋆ c)

= ∂σ(c).

(ii)

ση(p) = η(∂(η(p))) ⋆ η(p)

= η(∂(η(p))) ⋆ η(p) ⋆ e

⊆ η(∂(η(p))) ⋆ η(p) ⋆ η(p) ⋆ η(p)−1

= η(∂(η(p))) ⋆ ∂(η(p))η(p)

= η(∂(η(p)) ◦ p)

= ηρ(p).

(iii)

σ(pc) = η(∂(pc)) ⋆ pc

= η(p ◦ ∂(c) ◦ p−1) ⋆ pc

= η(p) ⋆ p(η(∂(c))) ⋆ p◦∂(c)(η(p−1)) ⋆ pc

= η(p) ⋆ p(η(∂(c))) ⋆ p◦∂(c)◦p−1
(η(p−1)) ⋆ pc

= η(p) ⋆ p(η(∂(c))) ⋆ ∂(pc)(η(p−1)) ⋆ pc

= η(p) ⋆ p(η(∂(c))) ⋆ {x ⋆ η(p)−1 ⋆ x−1 | x ∈ pc} ⋆ pc

⊇ η(p) ⋆ p(η(∂(c))) ⋆ pc ⋆ η(p)−1

= η(p) ⋆ p(η(∂(c)) ⋆ c) ⋆ η(p)−1
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= η(p) ⋆ pσ(c) ⋆ η(p)−1

= ∂(η(p))(p(σ(c)))

= ∂(η(p))◦pσ(c)

= ρ(p)σ(c).

�

We denote by Der(X ) the set of all derivations from P to C and Der(X/β∗) the
set of all derivations from P/β∗

P
to C/β∗

C
. By using the previous proposition, we

obtain Whitehead multiplication in Der(X/β∗) as follows:

Corollary 4.5. Let X = (C,P, ∂, α) be a crossed polymodule and η : P → C be a

derivation. Then, η defines endomorphisms ρ∗ and σ∗ of groups, where

(1) ρ∗ : P/β∗
P

→ P/β∗
P
, such that ρ∗(β∗P (p)) = D(η∗(β∗P (p))) ⊙ β∗P (p), for all

p ∈ P,

(2) σ∗ : C/β∗
C

→ C/β∗
C
, such that σ∗(β∗C(c)) = η∗(D(β∗C(c))) ⊗ β∗C(c), for all

c ∈ C.

Moreover,

(i) ρ∗D(β∗C(c)) = Dσ∗(β∗C(c)),
(ii) σ∗η∗(β∗P (p)) = η∗ρ∗(β∗P (p)),

(iii) σ∗
(
[β∗

P (p)][β∗C(c)]
)
= [σ∗(β∗

P (p))][σ∗(β∗C(c))], for all c ∈ C and p ∈ P.

The Whitehead multiplication in Der(X/β∗) is defined as follows:

(η∗1 · η∗2)(β∗P (p)) = (η∗1Dη∗2)(β∗P (p))⊗ η∗2(β
∗
P (p))⊗ η∗1(β

∗
P (p)).

Then, η∗1 · η∗2 ∈ Der(X/β∗) and this multiplication is associative. Therefore, this

multiplication turns Der(X/β∗) into a monoid. If we denote ρ∗ (= ρ∗η∗) and σ
∗ (=

σ∗η∗), then we have

ρ∗η∗1 ·η∗2 = ρ∗η∗1ρ
∗
η∗2

and σ∗η∗1 ·η2 = σ∗η∗1σ
∗
η∗2

The Whitehead group W(X/β∗) is defined to be the group of units of Der(X/β∗).
The following corollary give us the results of [19] about the fundamental crossed

module derived from a crossed polymodule.

Corollary 4.6. The following conditions on η ∈ Der(X ) are equivalent.

(1) η∗ ∈ W(X/β∗),
(2) ρ∗ : P/β∗

P
→ P/β∗

P
is an automorphism,

(3) σ∗ : C/β∗
C
→ C/β∗

C
is an automorphism.



DERIVATION AND ACTOR OF CROSSED POLYMODULES 213

Corollary 4.7. The following diagram is commutative.

C/β∗C
σ∗

//

D

��

C/β∗C

D

��

C
σ //

∂
��

φC

aaCCCCCCCCC
P∗(C)

∂
��

P ρ
//

φP}}{{
{{
{{
{{
{

η

AA

P∗(P )

η

ZZ

P/β∗P ρ∗
//

η∗

DD

P/β∗P

η∗

ZZ

Corollary 4.8. We have

(1) φPρ = ρ∗φP ,

(2) φCσ = σ∗φC .

Proof. (1) For every p ∈ P, we have

φPρ(p) = β∗P (ρ(p))

= β∗P (∂(η(p)) ◦ p)

= β∗P (∂(η(p)))⊙ β∗P (p)

= D(β∗C(η(p)))⊙ β∗P (p)

= D(η∗(β∗P (p)))⊙ β∗P (p)

= ρ∗(β∗P (p))

= ρ∗φP (p).

(2) For every c ∈ C, we have

φCσ(c) = φC(η(∂(c)) ∗ c)

= β∗C(η(∂(c)) ∗ c)

= β∗C(η(∂(c)))⊗ β∗C(c)

= η∗(β∗P (∂(c)))⊗ β∗C(c)

= η∗D(β∗C(c))⊗ β∗C(c)

= σ∗(β∗C(c))

= σ∗φC(c).

�
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Let X = (P,C, ∂, α) be a crossed polymodule. We set

Derβ∗(X ) = {η : P → C | η∗ ∈ Der(Xβ∗)}.

Then, we define the following hyperoperation on Derβ∗(X )

η1Hη2 = {η | η(p) ∈ (η1∂η2)(p) ◦ η2(p) ◦ η1(p), for all p ∈ P}.

Theorem 4.9. The above hyperoperation is well-defined.

Proof. Indeed, we must show that η1Hη2 ⊆ Derβ∗(X ). Suppose that η ∈ η1Hη2.
Then, for all p ∈ P, we have

η(p) ∈ (η1∂η2)(p) ⋆ η2(p) ⋆ η1(p).

Thus,

β∗C(η(p)) = β∗C(η1∂η2(p))⊗ β∗C(η2(p))⊗ β∗C(η1(p)),

for all p ∈ P . This implies that

η∗(β∗P (p)) = η∗1Dη∗2(β∗P (p))⊗ η∗2(β
∗
P (p))⊗ η∗1(β

∗
P (p)).

For simplify we take β∗P (p) = v. Then,

η∗(v) = η∗1Dη∗2(v)⊗ η∗2(v)⊗ η∗1(v). (I)

Now, by following Whitehead [19], the above relation give us a derivation. �

Corollary 4.10. For all η, η′ ∈ η1Hη2, we have η∗ = η′∗.

Proof. It is obviose by the relation (I). �

Theorem 4.11. (Derβ∗(X ),H) is a semihypergroup with identity.

Proof. Associativity law holds. Because

η1H(η2Hη3)
= η1H{η | η ∈ η2Hη3}
= η1H{η′ | η′(p) ∈ (η2∂η3(p)) ◦ η3(p) ◦ η2(p)}

= {η | η(p) ∈ (η1∂η
′)(p) ◦ η′(p) ◦ η1(p), η′(p) ∈ (η2∂η3)(p) ◦ η3(p) ◦ η2(p)}

= {η | η(p) ∈ (η1∂[η2∂η3(p) ◦ η3(p) ◦ η2(p)]) ◦ (η2∂η3)(p) ◦ η3(p)

◦ η2(p) ◦ η1(p)}
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= {η | η(p) ∈ η1[∂η2∂η3(p) ◦ ∂(η3(p)) ◦ ∂(η2(p))] ◦ (η2∂η3(p)) ◦ η3(p)

◦ η2(p) ◦ η1(p)}

= {η | η(p) ∈ η1(∂η2∂η3(p) ◦ ∂(η3(p))) ◦ (∂η2∂η3(p)◦∂(η3(p)))η1(∂η2(p))

◦ η2∂η3(p) ◦ η3(p) ◦ η2(p) ◦ η1(p)}

= {η | η(p) ∈ η1(∂η2∂η3(p)) ◦ (∂η2∂η3(p))η1(∂(η3(p)))

◦ (∂η2∂η3(p)◦∂(η3(p)))η1(∂η2(p)) ◦ (η2∂η3(p)) ◦ η3(p) ◦ η2(p) ◦ η1(p)}

= {η | η(p) ∈ (η1∂η2∂η3(p)) ◦ (η2∂η3(p)) ◦ (η1∂η3(p)) ◦ ((η2∂η3)(p))−1

◦ (η2(∂(η3(p)))) ◦ (η1(∂η2(p))) ◦ η3(p) ◦ (η3(p))−1

◦ ((η2∂η3)(p))−1(η2∂η3(p)) ◦ η3(p) ◦ η2(p) ◦ η1(p)}

= {η | η(p) ∈ (η1∂η2∂η3(p)) ◦ (η2∂η3(p)) ◦ (η1∂η3(p)) ◦ η3(p) ◦ (η1∂η2(p))

◦ η2(p) ◦ η1(p)}

= {η | η′(p) ∈ (η1∂η2(p)) ◦ η2(p) ◦ η1(p), η(p) ∈ (η′∂η3(p)) ◦ η3(p) ◦ η′(p)}

= {η | η′(p) ∈ (η1∂η2(p)) ◦ η2(p) ◦ η1(p)}Hη3
= (η1Hη2)Hη3

So, (Derβ∗(X ),H) is a semihypergroup. The element which maps each element of P

into the identity element of C, is the identity element of Derβ∗(X ). �

Corollary 4.12. The following diagram is a commutative diagram of semihyper-

groups with identity.

Derβ∗(X )

g

��

h

%%JJ
JJJ

JJJ
JJJ

JJJ
JJJ

JJJ
J

Der(X/β∗)
f

// End(P/β∗)

Note that every semigroup can consider as a semihypergroup.

The polygroup DA(X ) is defined to be the polygroup of invertible and reversible

elements of Derβ∗(X ).

Proposition 4.13. There is a homomorphism f : DA(X ) → W(X/β∗) by η 7→ η∗.

Proof. We have f(η1Hη2) = {f(η) | η ∈ η1Hη2} = {η∗ | η ∈ η1Hη2}. Since η∗1 · η∗2 ∈
η1Hη2, by Corollary 4.10, we conclude that f(η1Hη2) = η∗1 · η∗2 = f(η1) · f(η2). �
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Proposition 4.14. There is a homomorphism g : W(X/β∗) → Aut(X/β∗) by η∗ 7→
(σ∗η∗ , ρ

∗
η∗).

Proof. By Corollaries 4.5 and 4.6, it is obviouse. �

Corollary 4.15. There is the homomorphism gf : DA(X ) → Aut(X/β∗).

An action of Aut(X/β∗) on the group W(X/β∗) is defined by

T ((u, v), η∗) = (u,v)η∗ = u−1η∗v.

Theorem 4.16. Let X = (C,P, ∂, α) be a crossed polymodule. Then,

W(X/β∗), Aut(X/β∗), g, T )

is a crossed module.

Proof. The proof is similar to the results of Norrie about crossed modules [16]. �

Lemma 4.17. For every (u, v) ∈ Aut(X/β∗), we have

(1) ρ∗u−1η∗v = v−1ρ∗η∗v,

(2) σ∗u−1η∗v = u−1σ∗η∗u.

Proof. (1) We have

ρ∗u−1η∗v(β
∗
P (p)) = Du−1η∗v(β∗P (p))⊙ β∗P (p)

= v−1Dη∗v(β∗P (p))⊙ β∗P (p)

= v−1 (Dη∗v(β∗P (p))⊙ v(β∗P (p)))

= v−1ρ∗η∗v(β
∗
P (p)).

(2) We have

σ∗u−1η∗v(β
∗
C(c)) = u−1η∗v(D(β∗C(c))⊗ β∗C(c)

= u−1η∗Du(β∗C(c))⊗ β∗C(c)

= u−1 (η∗Du(β∗C(c))⊗ u(β∗C(c)))

= u−1σ∗η∗u(β
∗
C(c)).

�

Now, we can consider another action of Aut(X/β∗) on the polygroup DA(X ) by

T̂ : Aut(X/β∗)×DA(X ) → P∗(DA(X ))

T̂ ((u, v)), η) = {η′ | η′∗ = u−1η∗v}.
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Indeed, (u,v)η = {η′ | η′∗ = u−1η∗v}.

Theorem 4.18. Let X = (C,P, ∂, α) be a crossed polymodule. Then,

(DA(X ), Aut(X/β∗), gf, T̂ )

is a crossed polymodule.

Proof. By Lemma 4.17, it is straightforward. �
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