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The World Meteorological Organization has officially announced that when the United 
States exits the Paris Climate Change Accord, it expects the average global temperature to 
rise by about 0.3°C this century [1-4]. Large amounts of carbon dioxide are being generated 
by the drastic increase in the use of fossil fuels due to global industrialization. Clean fuels 
that can replace them are the need of the hour [5-7]. One of the environmentally-friendly 
energy alternatives–hydrogen, which is readily available since more than 70% of the world 
is occupied by water–is attracting attention. Hydrogen burns in nitrogen and oxygen oxides, 
and harmful substances can be safely removed even at low temperatures. Hydrogen also has 
a higher energy content than petroleum products such as gasoline or diesel, and can be used 
as a source of energy in mobile phones, portable devices, and hydrogen vehicles [8-12]. 

The hydrogen storage methods developed so far include liquid hydrogen storage, gas-
eous hydrogen storage, hydrogen compression methods using metal hydrides, and adsorp-
tion methods. Liquid hydrogen storage or gaseous hydrogen storage methods are expensive; 
moreover, they pose a risk of explosion at room temperature. Hydrogen compression using 
metal hydrides is the easiest way to store hydrogen at a maximum of 20 bar; however, the 
approach has disadvantages in that the required equipment is heavy in weight and is expen-
sive [9,13]. Methods of adsorption, namely, the solid hydrogen storage method, are potential 
solutions to overcome these problems. The adsorption method is highly advantageous in that 
the design is relatively simple and safe as compared to other methods [13-15]. 

A number of adsorbents can be used for solid hydrogen storage, including activated car-
bon, carbon nanotubes, silica, zeolite, and porous polymers [16-19]. In particular, carbon 
materials have excellent chemical stability, low environmental pollution, and high potential 
for industrial use as compared to other high strength, light weight, and high modulus materi-
als; moreover, carbon can be easily obtained from nature [20-22]. Among carbon materials, 
graphite is composed of layers held together by van der Waals forces, which makes it easier 
to control the interlayer spacing using other chemical bonds, such as hydrogen bonds and co-
valent bonds. As a result, various atoms, molecules, and ions can be inserted in the graphite 
to produce a layered compound [23,24].

By controlling the interlayer spacing, it is possible to store more hydrogen by expanding 
the layers of graphite, and also store hydrogen at a much lower pressure and temperature 
(298 K) than conventional methods which require high pressure (100 bar) and temperature. 
This adsorption method provides advantages including stability and safety, and therefore 
wide applicability, and thus supports the use of hydrogen as a promising alternative source 
of energy [9,25].

In this study, expanded graphites (EGs) were prepared by a chemical method using H2O2 
and KMnO4. The effects of the surface area and interlayer spacing of EG on hydrogen stor-
age at 298 K and 100 bar were studied. 

For the synthesis of the EGs, graphite flakes (Sigma-Aldrich Co., USA), potassium per-
manganate (KMnO4, ≥99.3%; OCI Co., Korea), sulfuric acid (H2SO4, 98%; Daejung Co., 
Korea), hydrogen peroxide (H2O2, ≥30%; OCI Co.), and thrice distilled water were used. All 
chemicals were used without further purification.

To prepare EG, first, 5 g of graphite flakes and 5 g of KMnO4 were added into a 1000-mL 
beaker, after which 500 mL of 98% H2SO4 solution was added. After 10 min, 100 mL of 
H2O2 solution (30 wt%) was slowly added into the mixture. Samples were collected at 3, 6, 9, 

DOI: http://dx.doi.org/
DOI:10.5714/CL.2018.27.117

This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License 
(http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted 
non-commercial use, distribution, and 
reproduction in any medium, provided 
the original work is properly cited.

Substitutional boron doping of carbon materials
Sumin Ha, Go Bong Choi, Seungki Hong, Doo Won Kim, and Yoong Ahm Kim

KCS Korean Carbon Society

 carbonlett.org

pISSN: 1976-4251 
eISSN: 2233-4998

REVIEWS

VOL. 27 July 31 2018



Carbon Letters Vol. 27, 117-120 (2018)

DOI: http://dx.doi.org/10.5714/CL.2018.27.117 118

increase in volume (~200 mL g–1); as the crystalline structure of 
the graphite is destroyed, the expansion increases to ~70 to 100 
times more than graphite flakes along the thickness or the direc-
tion of the c-axis [26,27]. Fig. 2 and Table 1 show the interlayer 
spacing of EGs with impregnation time in acid. 

In Fig. 2a, the XRD patterns of the graphite flakes show two 
peaks: one at 26.6° for the (0 0 2) plane and the other at 54.7° for 
the (0 0 4) plane (JCPDS no. 41-1487). The patterns of all EG 
samples show similar peaks at 26.6°; however, these are of weak 
intensity, and the other peak at 54.7° almost disappears. These 
changes in XRD patterns imply a transformation in the graphitic 
structure, attributed to impregnation in KMnO4, and is evidence 
of the change in interlayer spacing. 

As the impregnation time increases, the peak intensity of the 
EG becomes lower because of a reduction in crystallinity attrib-
uted to expansion [28,29]. The peak positions are slightly shifted 
from the 26.6° with a ‘d spacing of 0.332 nm of graphite flakes, 
to 25.2° with a ‘d spacing of 0.351° of EG-6; the smaller angles 
indicate an increase in interlayer spacing. These results imply 
that EG-6 has the largest hydrogen storage capacity compared 
to other samples [30-33]. The peak at 10.8o with a ‘d spacing of 
0.8 nm also indicate a reduction in crystallinity. The interlayer 
distance was calculated from the (002) peak of the XRD pattern 
using Bragg's law [34]:

nl = 2d sin q	 (1)

where n is an integer, θ is the X-ray wavelength, d is the in-
terlayer distance, and λ is the diffraction angle. The interlayer 
spacing gradually increased with time, reaching a maximum at 

and 12-h intervals, and the collected mixtures were sufficiently 
washed with thrice distilled water to adjust their pH to a nearly 
neutral value of 7. Subsequently the samples were dried at 80°C 
for 24 h. The prepared samples are henceforth denoted as EG-3, 
EG-6, EG-9, and EG-12, respectively.

To determine the structural characteristics and interlayer 
spacing of the EGs, X-ray diffraction (XRD; Bruker-AXS D2 
PHASER, USA) using CuKα radiation and scanning electron 
microscopy (SEM; S-4300SE, Hitachi, Japan) was used. The 
hydrogen storage capacity was measured at 298 K and 100 bar 
using a BELSORP instrument (BELSORP-max; BEL Co., Ltd). 
For this, the samples were degassed at 473 K for 8 h to remove 
other impurities, cooled at room temperature, and then measured 
using ultra-high-purity hydrogen gas (99.9999%) until 298 K 
and 100 bar was reached. Finally, data were obtained using the 
adsorption-desorption isotherm of H2 to determine the hydrogen 
storage capacity.

Fig. 1 shows a schematic of the hydrogen storage mechanism 
of EGs. The process of graphite expansion involves a massive 

Fig. 1. Schematic of hydrogen storage mechanism in EGs.
Fig. 2. (a) X-ray diffraction patterns of graphite and EGs, and SEM im-
ages of (b) conventional graphite flakes and (c) EG-6.
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Fig. 3. Hydrogen storage capacities of EGs at 298 K.
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