DOI QR코드

DOI QR Code

The effect of pore structure and surface properties of carbon nanotube films on the performance of a lithium sulfur battery

  • Song, Hyeonjun (Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University) ;
  • Hwang, Yunjae (Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University) ;
  • Kumar, Vimal Tiwari (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Jeong, Youngjin (Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University)
  • 투고 : 2017.10.23
  • 심사 : 2017.12.21
  • 발행 : 2018.07.31

초록

We fabricated a Li-S battery with post-treated carbon nanotube (CNT) films which offered better support for sulfur, and investigated the effect of the surface properties and pore structure of the post-treated CNT films on Li-S battery performance. Post-treatments, i.e., acid treatment, unzip process and cetyltrimethylammonium bromide (CTAB) treatment, effectively modified the surface properties and pore structure of the CNT film. The modified pore structure impacted the ability of the CNT films to accommodate the catholyte, resulting in an increase in initial discharge capacity.

키워드

참고문헌

  1. Gwon H, Hong J, Kim H, Seo DH, Jeon S, Kang K. Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci, 7, 538 (2014). https://doi.org/10.1039/C3EE42927J.
  2. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359 (2001). https://doi.org/10.1038/35104644.
  3. Lou XW, Deng D, Lee JY, Feng J, Archer LA. Self-supported formation of needlelike $Co_3O_4$ nanotubes and their application as lithium-ion battery electrodes. Adv Mater, 20, 258 (2008). https://doi.org/10.1002/adma.200702412.
  4. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett, 11, 2949 (2011). https://doi.org/10.1021/nl201470j.
  5. Ng SH, Wang J, Guo ZP, Chen J, Wang GX, Liu HK. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta, 51, 23 (2005). https://doi.org/10.1016/j.electacta.2005.04.045.
  6. Ji X, Nazar LF. Advances in Li-S batteries. J Mater Chem, 20, 9821 (2010). https://doi.org/10.1039/B925751A.
  7. Peramunage D, Licht S. A solid sulfur cathode for aqueous batteries. Science, 261, 1029 (1993). https://doi.org/10.1126/science.261.5124.1029.
  8. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Dai H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett, 11, 2644 (2011). https://doi.org/10.1021/nl200658a.
  9. Guo R, Shi P, Cheng X, Ma Y, Tan Z. Effect of Ag additive on the performance of $LiNi_1/3Co_1/3Mn_1/3O_2$ cathode material for lithium ion battery. J Power Sources, 189, 2 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.016.
  10. Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y. New nanostructured $Li_2S$/silicon rechargeable battery with high specific energy. Nano Lett, 10, 1486 (2010). https://doi.org/10.1021/nl100504q.
  11. Liang C, Dudney NJ, Howe JY. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater, 21, 4724 (2009). https://doi.org/10.1021/cm902050j.
  12. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem, 123, 26 (2011). https://doi.org/10.1002/ange.201100637.
  13. Mikhaylik YV, Akridge JR. Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc, 151, A1969 (2004). https://doi.org/10.1149/1.1806394.
  14. Song MS, Han SC, Kim HS, Kim JH, Kim KT, Kang YM, Ahn HJ, Dou SX, Lee JY. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc, 151, A791 (2004). https://doi.org/10.1149/1.1710895.
  15. Evers S, Nazar LF. New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res, 46, 1135 (2012). https://doi.org/10.1021/ar3001348.
  16. Su YS, Fu Y, Manthiram A. Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys Chem Chem Phys, 14, 14495 (2012). https://doi.org/10.1039/C2CP42796F.
  17. Zheng G, Zhang Q, Cha JJ, Yang Y, Li W, Seh ZW, Cui Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett, 13, 1265 (2013). https://doi.org/10.1021/nl304795g.
  18. Mentbayeva A, Belgibayeva A, Umirov N, Zhang Y, Taniguchi I, Kurmanbayeva I, Bakenov Z. High performance freestanding composite cathode for lithium-sulfur batteries. Electrochim Acta, 217, 242 (2016). https://doi.org/10.1016/j.electacta.2016.09.082.
  19. Jin F, Xiao S, Lu L, Wang Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries. Nano Lett, 16, 440 (2015). https://doi.org/10.1021/acs.nanolett.5b04105.
  20. Ma LL, Zhuang HL, Wei S, Hendrickson KE, Kim MS, Cohn G, Hennig RG, Archer LA. Enhanced Li-S batteries using aminefunctionalized carbon nanotubes in the cathode. ACS Nano, 10, 1050 (2015). https://doi.org/10.1021/acsnano.5b06373.
  21. Sun L, Wang D, Luo Y, Wang K, Kong W, Wu Y, Zhang L, Jiang K, Li Q, Zhang Y, Wang J, Fan S. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for highperformance lithium-sulfur batteries. ACS Nano, 10, 1300 (2015). https://doi.org/10.1021/acsnano.5b06675.
  22. Jeong YC, Lee K, Kim T, Kim JH, Park J, Cho YS, Yang SJ, Park CR. Partially unzipped carbon nanotubes for high-rate and stable lithium-sulfur batteries. J Mater Chem A, 4, 819 (2016). https://doi.org/10.1039/C5TA07818K.
  23. Song J, Kim S, Yoon S, Cho D, Jeong Y. Enhanced spinnability of carbon nanotube fibers by surfactant addition. Fibers Polym, 15, 762 (2014). https://doi.org/10.1007/s12221-014-0762-2.
  24. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872 (2009). https://doi.org/10.1038/nature07872.
  25. Liu Z, Ci L, Kar S, Ajayan PM, Lu JQ. Fabrication and electrical characterization of densified carbon nanotube micropillars for IC interconnection. IEEE Trans Nanotechnol, 8, 196 (2009). https://doi.org/10.1109/TNANO.2008.2011774.
  26. Aviles F, Cauich-Rodriguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon, 47, 2970 (2009). https://doi.org/10.1016/j.carbon.2009.06.044.
  27. Gutierrez-Becerra A, Barcena-Soto M, Soto V, Arellano-Ceja J, Casillas N, Prevost S, Noirez L, Gradzielski M, Escalante JI. Structure of reverse microemulsion-templated metal hexacyanoferrate nanoparticles. Nanoscale Res Lett, 7, 83 (2012). https://doi.org/10.1186/1556-276X-7-83.