Abstract
The various natural disasters such as floods and localized heavy rains are increasing due to the global warming. If a natural disaster can be detected and analyzed in advance and more effectively, it can prevent enormous damage of natural disasters. Recent development in visual sensor technologies has encouraged various studies on monitoring environments including rivers. In this paper, we propose a method to detect water regions from river images which can be exploited for river surveillance systems using video sensor networks. In the proposed method, we first segment a river image finely using the minimum spanning tree algorithm. Then, the seed regions for the river region and the background region are set by using the preliminary information, and each seed region is expanded by merging similar regions to segment the water region from the image. Experimental results show that the proposed method separates the water region from a river image easier and accurately.
지구 온난화로 인해 홍수나 집중 호우와 같은 자연 재해들이 증가하고 있다. 이러한 자연 재해들이 미리 그리고 효과적으로 인지될 수 있다면 재해로 인한 많은 피해들을 미리 막을 수 있을 것이다. 최근 비주얼 센서기술의 발전을 바탕으로 재해를 예방하기 위해 하천을 포함한 다양한 자연환경을 감시하는데 비주얼 센서 기술을 적용하는 연구들이 많이 진행되고 있다. 이 논문에서는 비주얼 센서 네트워크 기술을 이용한 하천 감시시스템에 적용 가능한 하천 영상에서 강물 영역을 분할하는 방법을 제안한다. 제안하는 방법에서는 먼저 최소 신장트리 알고리즘을 이용하여 영상을 세밀하게 분할한다. 그리고 강물 영역과 배경 영역에 대한 사전 정보를 이용하여 초기 영역을 설정하고 유사한 영역을 병합하여 각 영역을 확장함으로써 강물 영역을 분리한다. 실험결과는 제안하는 방법이 간단하면서도 정확하게 강물 영상에서 강물 영역을 분리하는 것을 보여준다.