DOI QR코드

DOI QR Code

Recent progress in microneme-based vaccines development against Toxoplasma gondii

  • Foroutan, Masoud (Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University) ;
  • Zaki, Leila (Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University) ;
  • Ghaffarifar, Fatemeh (Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University)
  • Received : 2018.03.28
  • Accepted : 2018.07.06
  • Published : 2018.07.31

Abstract

Toxoplasmosis is a cosmopolitan zoonotic disease, which infect several warm-blooded mammals. More than one-third of the human population are seropositive worldwide. Due to the high seroprevalence of Toxoplasma gondii infection worldwide, the resulting clinical, mental, and economical complications, as well as incapability of current drugs in the elimination of parasites within tissue cysts, the development of a vaccine against T. gondii would be critical. In the past decades, valuable advances have been achieved in order to identification of vaccine candidates against T. gondii infection. Microneme proteins (MICs) secreted by the micronemes play a critical role in the initial stages of host cell invasion by parasites. In this review, we have summarized the recent progress for MIC-based vaccines development, such as DNA vaccines, recombinant protein vaccines, vaccines based on live-attenuated vectors, and prime-boost strategy in different mouse models. In conclusion, the use of live-attenuated vectors as vehicles to deliver and express the target gene and prime-boost regimens showed excellent outcomes in the development of vaccines against toxoplasmosis, which need more attention in the future studies.

Keywords

References

  1. Dautu G, Munyaka B, Carmen G, et al. Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential. Exp Parasitol 2007;116:273-82. https://doi.org/10.1016/j.exppara.2007.01.017
  2. Ismael AB, Sekkai D, Collin C, Bout D, Mevelec MN. The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis. Infect Immun 2003;71:6222-8. https://doi.org/10.1128/IAI.71.11.6222-6228.2003
  3. Xiang W, Qiong Z, Li-peng L, Kui T, Jian-wu G, Heng-ping S. The location of invasion-related protein MIC3 of Toxoplasma gondii and protective effect of its DNA vaccine in mice. Vet Parasitol 2009;166:1-7. https://doi.org/10.1016/j.vetpar.2009.08.014
  4. Fang R, Nie H, Wang Z, et al. Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Vet Parasitol 2009;164: 134-40. https://doi.org/10.1016/j.vetpar.2009.06.012
  5. Fang R, Feng H, Hu M, et al. Evaluation of immune responses induced by SAG1 and MIC3 vaccine cocktails against Toxoplasma gondii. Vet Parasitol 2012;187:140-6. https://doi.org/10.1016/j.vetpar.2011.12.007
  6. Qu D, Han J, Du A. Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice. Parasitol Res 2013;112:2593-9. https://doi.org/10.1007/s00436-013-3425-0
  7. Ghaffarifar F, Naserifar R, Jafari Madrak M. Eukaryotic plasmids with Toxoplasma gondii dense granule antigen (GRA5) and microneme 3 (MIC3) genes as a cocktail DNA vaccine and evaluation of immune responses in BALB/C mice. J Clin Med Genomics 2014;3:121.
  8. Yang D, Liu J, Hao P, et al. MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum. Parasitol Res 2015;114:3791-9. https://doi.org/10.1007/s00436-015-4609-6
  9. Gong P, Cao L, Guo Y, et al. Toxoplasma gondii: Protective immunity induced by a DNA vaccine expressing GRA1 and MIC3 against toxoplasmosis in BALB/c mice. Exp Parasitol 2016;166:131-6. https://doi.org/10.1016/j.exppara.2016.04.003
  10. Wang H, He S, Yao Y, et al. Toxoplasma gondii: protective effect of an intranasal SAG1 and MIC4 DNA vaccine in mice. Exp Parasitol 2009;122:226-32. https://doi.org/10.1016/j.exppara.2009.04.002
  11. Peng GH, Yuan ZG, Zhou DH, et al. Sequence variation in Toxoplasma gondii MIC4 gene and protective effect of an MIC4 DNA vaccine in a murine model against toxoplasmosis. J Anim Vet Adv 2010;9:1463-8. https://doi.org/10.3923/javaa.2010.1463.1468
  12. Peng GH, Yuan ZG, Zhou DH, et al. Toxoplasma gondii microneme protein 6 (MIC6) is a potential vaccine candidate against toxoplasmosis in mice. Vaccine 2009;27:6570-4. https://doi.org/10.1016/j.vaccine.2009.08.043
  13. Yan HK, Yuan ZG, Song HQ, et al. Vaccination with a DNA vaccine coding for perforin-like protein 1 and MIC6 induces significant protective immunity against Toxoplasma gondii. Clin Vaccine Immunol 2012;19:684-9. https://doi.org/10.1128/CVI.05578-11
  14. Liu MM, Yuan ZG, Peng GH, et al. Toxoplasma gondii microneme protein 8 (MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitol Res 2010;106:1079-84. https://doi.org/10.1007/s00436-010-1742-0
  15. Li ZY, Chen J, Petersen E, et al. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine 2014;32:3058-65. https://doi.org/10.1016/j.vaccine.2014.03.042
  16. Tao Q, Fang R, Zhang W, et al. Protective immunity induced by a DNA vaccine-encoding Toxoplasma gondii microneme protein 11 against acute toxoplasmosis in BALB/c mice. Parasitol Res 2013;112:2871-7. https://doi.org/10.1007/s00436-013-3458-4
  17. Yuan ZG, Ren D, Zhou DH, et al. Evaluation of protective effect of pVAX-TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine 2013;31:3135-9. https://doi.org/10.1016/j.vaccine.2013.05.040
  18. Yan HK, Yuan ZG, Petersen E, et al. Toxoplasma gondii: protective immunity against experimental toxoplasmosis induced by a DNA vaccine encoding the perforin-like protein 1. Exp Parasitol 2011;128:38-43. https://doi.org/10.1016/j.exppara.2011.02.005
  19. Zheng B, Ding J, Chen X, et al. Immuno-efficacy of a T. gondii secreted protein with an altered thrombospondin repeat (TgSPATR) as a novel DNA vaccine candidate against acute toxoplasmosis in BALB/c mice. Front Microbiol 2017;8:216.
  20. Beghetto E, Nielsen HV, Del Porto P, et al. A combination of antigenic regions of Toxoplasma gondii microneme proteins induces protective immunity against oral infection with parasite cysts. J Infect Dis 2005;191:637-45. https://doi.org/10.1086/427660
  21. Pinzan CF, Sardinha-Silva A, Almeida F, et al. Vaccination with recombinant microneme proteins confers protection against experimental toxoplasmosis in mice. PLoS One 2015;10:e0143087. https://doi.org/10.1371/journal.pone.0143087
  22. Lourenco EV, Bernardes ES, Silva NM, Mineo JR, Panunto-Castelo A, Roque-Barreira MC. Immunization with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii. Microbes Infect 2006;8:1244-51. https://doi.org/10.1016/j.micinf.2005.11.013
  23. Nie H, Fang R, Xiong BQ, et al. Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins. Vet Parasitol 2011;181:215-21. https://doi.org/10.1016/j.vetpar.2011.04.039
  24. Qu D, Yu H, Wang S, Cai W, Du A. Induction of protective immunity by multiantigenic DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vet Parasitol 2009;166:220-7. https://doi.org/10.1016/j.vetpar.2009.08.016
  25. Lee SH, Kim AR, Lee DH, Rubino I, Choi HJ, Quan FS. Protection induced by virus-like particles containing Toxoplasma gondii microneme protein 8 against highly virulent RH strain of Toxoplasma gondii infection. PLoS One 2017;12:e0175644. https://doi.org/10.1371/journal.pone.0175644
  26. Yin H, Zhao L, Wang T, Zhou H, He S, Cong H. A Toxoplasma gondii vaccine encoding multistage antigens in conjunction with ubiquitin confers protective immunity to BALB/c mice against parasite infection. Parasit Vectors 2015;8:498. https://doi.org/10.1186/s13071-015-1108-7
  27. Wang T, Yin H, Li Y, Zhao L, Sun X, Cong H. Vaccination with recombinant adenovirus expressing multi-stage antigens of Toxoplasma gondii by the mucosal route induces higher systemic cellular and local mucosal immune responses than with other vaccination routes. Parasite 2017; 24:12. https://doi.org/10.1051/parasite/2017013
  28. Yu L, Yamagishi J, Zhang S, et al. Protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing TgAMA1 as vaccines against Toxoplasma gondii infection in mice. Parasitol Int 2012;61:481-6. https://doi.org/10.1016/j.parint.2012.04.001

Cited by

  1. Seroepidemiological evaluation of Toxoplasma gondii immunity among the general population in southwest of Iran vol.42, pp.4, 2018, https://doi.org/10.1007/s12639-018-1047-2
  2. Research Progress of Antigens Related to the Process of Toxoplasma gondii Invading Host Cell vol.7, pp.6, 2018, https://doi.org/10.12677/ojns.2019.76068
  3. Acetonic Fraction of Bidens pilosa Enriched for Maturase K Is Able to Control Cerebral Parasite Burden in Mice Experimentally Infected With Toxoplasma gondii vol.6, pp.None, 2018, https://doi.org/10.3389/fvets.2019.00055
  4. A systematic review on efficiency of microneme proteins to induce protective immunity against Toxoplasma gondii vol.38, pp.4, 2018, https://doi.org/10.1007/s10096-018-03442-6
  5. Antigenic Epitope Analysis and Efficacy Evaluation of GRA41 DNA Vaccine Against T. gondii Infection vol.64, pp.3, 2019, https://doi.org/10.2478/s11686-019-00091-3
  6. Toxoplasma gondii : Preventive and therapeutic effects of morphine and evaluation of treatment parameters of tachyzoites and infected macrophages in vitro and in a murine model vol.19, pp.None, 2020, https://doi.org/10.17179/excli2019-1961
  7. Immunoinformatic Analysis of Calcium-Dependent Protein Kinase 7 (CDPK7) Showed Potential Targets for Toxoplasma gondii Vaccine vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/9974509
  8. Toxoplasma gondii Proteasome Subunit Alpha Type 1 with Chitosan: A Promising Alternative to Traditional Adjuvant vol.13, pp.5, 2018, https://doi.org/10.3390/pharmaceutics13050752
  9. Review of DNA Vaccine Approaches Against the Parasite Toxoplasma gondii vol.107, pp.6, 2018, https://doi.org/10.1645/20-157
  10. Bioinformatics analysis of calcium-dependent protein kinase 4 (CDPK4) as Toxoplasma gondii vaccine target vol.14, pp.1, 2018, https://doi.org/10.1186/s13104-021-05467-1