8 Years Report of Urine Organic Acid Analysis - Comparison before and after Introduction of Neonatal Screening Test using Tandem Mass Spectrometry -

소변 유기산 분석 8년의 정리 -탠덤매스(Tandem mass spectrometry)를 이용한 신생아 선별검사 도입 전후의 비교-

  • Ahn, Seok Min (Department of Pediatrics, Hallym University College of Medicine) ;
  • Shin, Woo Chul (Department of Pediatrics, Hallym University College of Medicine) ;
  • Jeong, Han Bin (Department of Pediatrics, Hallym University College of Medicine) ;
  • Seo, Young Jun (Department of Pediatrics, Hallym University College of Medicine) ;
  • Jeong, Hwal Rim (Department of Pediatrics, Hallym University College of Medicine) ;
  • Yoon, Jong Hyung (Department of Pediatrics, Hallym University College of Medicine) ;
  • Bae, Eun Ju (Department of Pediatrics, Hallym University College of Medicine) ;
  • Lee, Hong Jin (Department of Pediatrics, Hallym University College of Medicine)
  • 안석민 (한림대학교 춘천성심병원 소아청소년과) ;
  • 신우철 (한림대학교 춘천성심병원 소아청소년과) ;
  • 정한빈 (한림대학교 춘천성심병원 소아청소년과) ;
  • 서영준 (한림대학교 춘천성심병원 소아청소년과) ;
  • 정활림 (한림대학교 춘천성심병원 소아청소년과) ;
  • 윤종형 (한림대학교 춘천성심병원 소아청소년과) ;
  • 배은주 (한림대학교 춘천성심병원 소아청소년과) ;
  • 이홍진 (한림대학교 춘천성심병원 소아청소년과)
  • Published : 2018.04.30

Abstract

Purpose: Disorders of organic acid metabolism have various clinical manifestations and it may be life-threatening. The prognoses of affected children are dependent on early diagnosis and treatment. We report this study to find out detection rate of referred samples, clinical manifestations and age distribution after introduction of neonatal screening test using tandem mass spectrometry in Hallym University Chuncheon Sacred Heart Hospital during 8 years and 9 months. Methods: The 2,794 patients referred from Jan. 2007 to Sep. 2015 were divided into four groups according to age. We conducted organic acid analysis of urine samples of patients and analyzed clinical manifestations and distributions of age at the diagnosis. For patients with ambiguous results, reanalysis of urine organic acid after diet restriction, protein loading and restriction, has been done. Results: A total of 626 patients with 20 disorders were diagnosed. Mitochondrial disorders (482 patients) were the most common diagnosis, followed by ketolytic defects (67), 3-hydroxyisobutyric aciduria (32), EPEMA syndrome (8), 3-methylcrotonyl glycinuria (7), glutaric aciduria type II (6) and type I (4), methylmalonic aciduria (3), isovaleric aciduria (3) and medium chain acyl-CoA dehydrogenase deficiency (3). Conclusion: As neonatal screening test using tandem mass spectrometry is increasingly common and medical environment is changed, detection rate of disorders of organic acid metabolism in this study has decreased compared to previous report. Because the deterioration can be prevented by early diagnosis and treatment, many pediatricians have to pay special attention to possibility of the disorders and make an effort for early diagnosis in clinical setting.

목적: 유기산 대사이상 질환은 신경학적 증상과 증후를 포함하여 다양한 임상증상으로 나타날 수 있으며 때로는 생명을 위협할 수 있는 급성 악화로 발현될 수 있다. 따라서 이환된 환자들의 예후는 조기 진단과 치료에 의해 좌우된다. 탠덤매스검사의 도입 후 본원에 의뢰된 검체들을 분석하여 유기산 대사이상 질환의 진단율의 변화 및 연령별 분포와 임상양상을 알아보기 위해 본 연구를 시행하였다. 방법: 2007년 1월부터 2015년 9월까지 약 8년 9개월간 전국에 있는 대학병원에서 의뢰된 2,794례의 검체들을 이용하여 소변 유기산검사를 실시하였고 임상증상과 성별 및 연령군별 분포를 분석하여 정리하였다. 불확실한 결과를 보였던 환자들은 24시간 이상의 고단백 식사 후와 24시간 이상의 단백질 제한식사 후에 소변 유기산 분석을 재시행 하였다. 결과: 총 20가지 질환, 626례의 환자들이 진단되었는데, 사립체 질환이 482례로 가장 많이 진단되었고 그 뒤를 이어 케톤분해이상질환군 67례, 3-히드록시이소부티르산뇨증 32례, EPEMA 증후군 8례, 3-메틸크로토닐 글리신뇨증 7례, 글루타르산뇨증 II형 6례와 I형 4례, 메틸말론산뇨증, 이소발레린산뇨증, 중쇄 acyl-CoA 탈수소효소 결핍증이 각 3례 등이 진단되었다. 결론: 탠덤매스를 이용한 신생아 선별검사가 점차 보편화되고 의료환경의 변화로 인해, 이전의 보고와 비교했을 때 본 연구 기간동안의 유기산 대사이상 질환의 진단율은 다소 감소하였다. 유기산 대사이상 질환들은 다양한 증상들이 나타나고 종종 생명을 위협하는 상태로 발현되는 경우가 많다. 조기 진단과 처치를 통해 이런 급성 악화의 발현을 예방할 수 있기 때문에 진료현장에서 비특이적인 증상 및 신경학적 장애를 보이는 환자를 진료할 때 주의가 필요하다고 할 수 있겠다.

Keywords

References

  1. Lee HJ. Organic acidemias in Korea. Korean J Pediatr 2002;45:1459-76.
  2. Yoo HW. Diagnosis of inherited metabolic disorders based on their diverse clinical features and laboratory tests. Korean J Pediatr 2006;49:1140-51. https://doi.org/10.3345/kjp.2006.49.11.1140
  3. Bang JS, Lim SH, Lee KH, Bae EJ, Park WI, Lee HJ. Organic acidemias in Korea-Eight years experience of organic acid analysis. Korean J Pediatr 2006;49:258-67. https://doi.org/10.3345/kjp.2006.49.3.258
  4. Choi YJ, Kim IC, Choi YK, Lee HJ, Kim BS, Park WI, et al. Quantification of age-related reference values for urinary organic acids in the healthy Korean population. Korean J Pediatr 2001;44:1413-23.
  5. Cheong HJ, Kim HR, Lee SS, Bae EJ, Park WI, Lee HJ, et al. Inherited metabolic diseases in the urine organic acid analysis of complex febrile seizure patients. Korean J Pediatr 2009;52:199-204. https://doi.org/10.3345/kjp.2009.52.2.199
  6. Kim YH, Ahn SM, Seo YJ, Yoon JH, Bae EJ, Lee HJ. Mitochondrial Disease: Will it become a New Great Imitator? J Korean Soc Inher Metab Dis 2016;16: 123-34.
  7. Yoo HW. Inherited metabolic diseases. 1st ed. Seoul: Korea Medical Book Publishing Company; 2016.
  8. Parra D, Gonzalez A, Mugueta C, Martinez A, Monreal I. Laboratory approach to mitochondrial diseases. J Physiol Biochem 2001;57:267-84. https://doi.org/10.1007/BF03179820
  9. Fukao T, Mitchell G, Sass JO, Hori T, Orii K, Aoyama Y. Ketone body metabolism and its defects. J Inherit Metab Dis 2014;37:541-51. https://doi.org/10.1007/s10545-014-9704-9
  10. Choi JW, Ahn SM, Kim YH, Baek JW, Ryu HW, Bae EJ, et al. Ketolytic Defects in Children and Adolescents. J Korean Soc Inher Metab Dis 2015;15:147-54.
  11. Hori T, Yamaguchi S, Shinkaku H, Horikawa R, Shigematsu Y, Takayanagi M, et al. Inborn errors of ketone body utilization. Pediatr Int 2015;57:41-8. https://doi.org/10.1111/ped.12585
  12. Sasaki M, Kimura M, Sugai K, Hashimoto T, Yamaguchi S. 3-Hydroxyisobutyric aciduria in two brothers. Pediatr Neurol 1998;18:253-5. https://doi.org/10.1016/S0887-8994(97)00161-6
  13. Boulat O, Benador N, Girardin E, Bachmann C. 3-hydroxyisobutyric aciduria with a mild clinical course. J Inherit Metab Dis 1995;18:204-6. https://doi.org/10.1007/BF00711767
  14. Ismail EA, Seoudi TM, Morsi EA, Ahmad AH. Ethylmalonic encephalopathy. Another patient from Kuwait. Neurosciences 2009;14:78-80.
  15. Yoon HR, Hahn SH, Ahn YM, Shin YJ. Ethylmalonic Encephalopathy. J Korean Soc Inher Metab Dis 2001;1:5-12.
  16. Kwak JY, Park JY, Nam KA, Son SH, Seo SS. Isolated 3-methylcrotonyl CoA carboxylase deficiency detected by newborn screening program using tandem mass spectrometry. Korean J Pediatr 2005;48:561-4.
  17. Frerman FE, Goodman SI. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein: ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc Natl Acad Sci USA 1985;82:4517-20. https://doi.org/10.1073/pnas.82.13.4517
  18. Amendt B, Rhead W. The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria. Mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts. J Clin Invest 1986;78:205-13. https://doi.org/10.1172/JCI112553
  19. Campistol J, Ribes A, Alvarez L, Christensen E, Millington DS. Glutaric aciduria type I: unusual biochemical presentation. J Pediatr 1992;121:83-6. https://doi.org/10.1016/S0022-3476(05)82548-X
  20. Ledley FD, Crane AM, Lumetta M. Heterogeneous alleles and expression of methylmalonyl CoA mutase in mut methylmalonic acidemia. Am J Hum Genet 1990;46:539.
  21. Cheon KS, Lee DH. Isovaleric acidemia in siblings diagnosed by organic acid analysis. Korean J Pediatr 2000;43:828-31.
  22. Yoon JH, Lee HJ. Anemia Can Be Associated with Isovaleric Acidemia. Clin Pediatr Hematol Oncol 2018; 25:76-9. https://doi.org/10.15264/cpho.2018.25.1.76
  23. Taubman B, Hale DE, Kelley RI. Familial Reye-like syndrome: a presentation of medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatrics 1987; 79:382-5.
  24. Howat A, Bennett M, Variend S, Shaw L, Engel P. Defects of metabolism of fatty acids in the sudden infant death syndrome. Br Med J (Clin Res Ed) 1985; 290:1771-3. https://doi.org/10.1136/bmj.290.6484.1771
  25. Wortmann SB, Duran M, Anikster Y, Barth PG, Sperl W, Zschocke J, et al. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature. J Inherit Metab Dis 2013;36:923-8. https://doi.org/10.1007/s10545-012-9580-0
  26. Kerrigan JF, Aleck KA, Tarby TJ, Bird CR, Heidenreich RA. Fumaric aciduria: clinical and imaging features. Ann Neurol 2000;47:583-8. https://doi.org/10.1002/1531-8249(200005)47:5<583::AID-ANA5>3.0.CO;2-Y
  27. Coughlin EM, Christensen E, Kunz PL, Krishnamoorthy K, Walker V, Dennis N, et al. Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol Genet Metab 1998;63:254-62. https://doi.org/10.1006/mgme.1998.2684
  28. Gibson K, Cassidy S, Seaver L, Wanders R, Kennaway N, Mitchell G, et al. Fatal cardiomyopathy associated with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J Inherit Metab Dis 1994;17:291-4. https://doi.org/10.1007/BF00711810
  29. Lee EH, Ko JM, Kim JM, Yoo HW. Genotype and clinical features of Korean patients with methylmalonic aciduria and propionic aciduria. Korean J Pediatr 2008;51:964-70. https://doi.org/10.3345/kjp.2008.51.9.964
  30. Yeoum WS, Lee KW, Chae BH, Lim BK, Lee HJ. A Case of Propionic Acidemia. Korean J Pediatr 1999; 42:1159-64.
  31. Yoon YA, Lee DH, Ki CS, Lee SY, Kim JW, Lee YW, et al. SLC22A5 mutations in a patient with systemic primary carnitine deficiency: the first Korean case confirmed by biochemical and molecular investigation. Ann Clin Lab Sci 2012;42:424-8.
  32. Longo N, di San Filippo CA, Pasquali M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 2006;142:77-85.
  33. Cho DH, Lee HM, Kim SY, Ra CS. A Case of Maple Syrup Urine Disease. Korean J Pediatr 1997;40:1297-302.