DOI QR코드

DOI QR Code

Probabilistic Load Flow for Power Systems with Wind Power Considering the Multi-time Scale Dispatching Strategy

  • Qin, Chao (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University) ;
  • Yu, Yixin (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University) ;
  • Zeng, Yuan (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University)
  • 투고 : 2017.06.10
  • 심사 : 2018.04.03
  • 발행 : 2018.07.01

초록

This paper proposes a novel probabilistic load flow model for power systems integrated with large-scale wind power, which considers the multi-time scale dispatching features. The ramp limitations of the units and the steady-state security constraints of the network have been comprehensively considered for the entire duration of the study period; thus, the coupling of the system operation states at different time sections has been taken into account. For each time section, the automatic generation control (AGC) strategy is considered, and all variations associated with the wind power and loads are compensated by all AGC units. Cumulants and the Gram-Charlier expansion are used to solve the proposed model. The effectiveness of the proposed method is validated using the modified IEEE RTS 24-bus system and the modified IEEE 118-bus system.

키워드

참고문헌

  1. A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. Mckeogh, "Current methods and advances in forecasting of wind power generation," Rene. Energy, vol. 27, no. 1, 2012.
  2. Y. V. Makarov, C. Loutan, J. Ma, and P. de Mello, "Operational impacts of wind generation on California power systems," IEEE Trans. Power Syst., vol. 24, no. 2, pp. 1039-1050, May 2009. https://doi.org/10.1109/TPWRS.2009.2016364
  3. A. M. Leita da Silva, S. M. P. Ribeiro, V. L. Arienti, R. N. Allan, and M. B. Do Coutto Filho, "Probabilistic load flow techniques applied to power system expansion planning," IEEE Trans. Power Syst., vol. 5, no. 4, pp. 1047-1053, Nov. 1990.
  4. N. D. Hatziaryriou, and T. S. Karakatsanis, "Probabilistic load flow for assessment of voltage instability," IEE Proc. Gener., Transm., Distrib., vol. 145, no. 2, pp. 196-202, 1998. https://doi.org/10.1049/ip-gtd:19981695
  5. Y. Y. Hong, and Y. F. Luo, "Optimal VAR control considering wind farms using probabilistic load-flow and Gray-based Genetic Algorithms," IEEE Trans. Power Del., vol. 24, no. 3, pp. 1441-1449, Jun. 2009. https://doi.org/10.1109/TPWRD.2009.2016625
  6. J. M. Sexauer, and S. Mohagheghi, "Voltage quality assessment in a distribution system with distributed generation - a probabilistic load flow approach," IEEE Trans. Power Del., vol. 28, no. 3, pp. 1652- 1662, Jul. 2013. https://doi.org/10.1109/TPWRD.2013.2259599
  7. B. Borkowska, "Probabilistic load flow," IEEE Trans. Power App. Syst., vol. PAS-93, no. 3, pp. 752-759, 1974. https://doi.org/10.1109/TPAS.1974.293973
  8. H. Yu, C. Y. Chung, K. P. Wong, H. W. Lee, and J. H. Zhang, "Probabilistic load flow evaluation with hybrid Latin hypercube sampling and Cholesky decomposition," IEEE Trans. Power Syst., vol. 24, no. 2, pp. 661-667, May, 2009. https://doi.org/10.1109/TPWRS.2009.2016589
  9. J. M. Morales, L. Baringo, A. J. Conejo, and R. Minguez, "Probabilistic power flow with correlated wind sources," IET Gener. Trasmiss. Distrib., vol. 4, no. 5, pp. 641-651, May 2010. https://doi.org/10.1049/iet-gtd.2009.0639
  10. C. L. Su, "Probabilistic load-flow computation using point estimate method," IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1843-1851, Nov, 2005. https://doi.org/10.1109/TPWRS.2005.857921
  11. J. M. Morales, and J. P. Ruiz, "Point estimate schemes to solve the probabilistic power flow," IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1594-1601, Nov, 2007. https://doi.org/10.1109/TPWRS.2007.907515
  12. P. Caramia, G. Carpinelli, and P. Varilone, "Point estimate schemes for probabilistic three-phase load flow," Elect Power Syst. Res., vol. 80, no. 2, pp. 168- 175, 2010. https://doi.org/10.1016/j.epsr.2009.08.020
  13. C. Wan, Z. Xu, Z. Y. Dong, and K. P. Wong, "Probabilistic load flow computation using First-order Second-moment method," IEEE PESGM, July 2012, pp. 1-8.
  14. R. N. Allan, and M. R. G. Al Shakarchi, "Probabilistic AC load flow," Proc. IEE, vol. 123, no. 6, pp. 531- 536, Jun. 1976.
  15. R. N. Allan, C. H. Grigg, and M. R. G. Al-Shakarchi, "Numerical techniques in probabilistic load flow problems," Int. J. Numer. Meth. Eng., vol. 10, pp. 853-860, Mar. 1976. https://doi.org/10.1002/nme.1620100412
  16. P. Zhang and S. T. Lee, "Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion," IEEE Trans. Power Syst., vol. 19, no. 1, pp. 676-682, Feb. 2004.
  17. T. Williams, and C. Crawford, "Probabilistic load flow modeling comparing maximum Entropy and Gram-Charlier probability density function reconstructions," IEEE Trans. Power Syst., vol. 28, no. 1, pp. 272-280, Feb. 2013. https://doi.org/10.1109/TPWRS.2012.2205714
  18. J. Usaola, "Probabilistic load flow in systems with wind generation," IET Gen., Transm., Distrib., vol. 3, no. 12, pp. 1031-1041.
  19. N. D. Hatziargyriou, T. S. Karakatsanis, and M. Papadopoulos, "Probabilistic load flow in distribution systems containing dispersed wind power generation," IEEE Trans. Power Syst., vol. 8, no. 1, pp. 159-165, Feb. 1993. https://doi.org/10.1109/59.221262
  20. D. Villanueva, J. L. Pazos, and A. Feijoo, "Probabilistic load flow including wind power generation," IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1659- 1667, 2011. https://doi.org/10.1109/TPWRS.2010.2096436
  21. Y. Yuan, J. Zhou, P. Ju, and J. Feuchtwang, "Probabilistic load flow computation of a power system containing wind farms using the method of combined cumulants and Gram-Charlier expansion," IET Renew. Power Gener., vol. 5, no. 6, pp. 448-454, 2011. https://doi.org/10.1049/iet-rpg.2010.0218
  22. M. H. Ahmed, K. Bhattacharya, and M. M. A. Salama, "Probabilistic distribution load flow with different wind turbine models," IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1540-1549, May 2013. https://doi.org/10.1109/TPWRS.2012.2226611
  23. Z. Ren, W. Li, R. Billinton, and W. Yan, "Probabilistic power flow analysis based on the stochastic response surface method," IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2307-2315, May 2016. https://doi.org/10.1109/TPWRS.2015.2461159
  24. M. Fan, V. Vittal, G. T. Heydt, R. Ayyanar, "Probabilistic power flow analysis with generation dispatch including photovoltaic resources," IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1797-1805, May 2013. https://doi.org/10.1109/TPWRS.2012.2219886
  25. Reliability Test System Task Force of the Application of Probability Methods Subcommittee, "IEEE reliability test system," IEEE Trans. Power App. Syst., vol. PAS-98, no.6, pp. 2047-2054, 1979. https://doi.org/10.1109/TPAS.1979.319398
  26. C. Wang, and S. M. Shahidehpour, "Effects of ramprate limits on unit commitment and economic dispatch," IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1341-1350, Aug. 1993. https://doi.org/10.1109/59.260859