THE MODULUS MULTIPLICATION TRANSFORM OF BOUNDED LINEAR OPERATORS

Jun Ik Lee* and Sang Hoon Lee**

Abstract

In this paper, we study which transform preserves the k-hyponormality of weighted shifts. For this, we introduce a new transform, the modulus multiplication transform, and then examine various properties of it.

1. Introduction

Let \mathcal{H} be a Hilbert space and T be a bounded linear operator defined on \mathcal{H} whose polar decomposition is $T=U|T|$. The Aluthge transform of T is the operator $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$. This transform was first studied in [1] and has received much attention in recent years. One reason the Aluthge transform is interesting is in relation to the invariant subspace problem. We recall that the Duggal transform $\widetilde{T}^{D}=|T| U$ of T, which is first referred in [9]. Clearly, the spectrum of $\widetilde{T}\left(\right.$ resp. $\left.\widetilde{T}^{D}\right)$ equals that of T. For $\alpha \equiv\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ a bounded sequence of positive real numbers (called weights), let $W_{\alpha} \equiv \operatorname{shift}\left(\alpha_{0}, \alpha_{1}, \cdots\right): \ell^{2}\left(\mathbb{Z}_{+}\right) \rightarrow \ell^{2}\left(\mathbb{Z}_{+}\right)$be the associated unilateral weighted shift, defined by $W_{\alpha} e_{k}:=\alpha_{k} e_{k+1}$ (all $k \geq 0)$, where $\left\{e_{k}\right\}_{k=0}^{\infty}$ is the canonical orthonormal basis in $\ell^{2}\left(\mathbb{Z}_{+}\right)$. The moments of W_{α} are given as

$$
\gamma_{n} \equiv \gamma_{n}\left(W_{\alpha}\right):=\left\{\begin{array}{cc}
1, & \text { if } n=0 \tag{1.1}\\
\alpha_{0}^{2} \cdot \ldots \cdot \alpha_{n-1}^{2}, & \text { if } n>0
\end{array}\right.
$$

[^0]For a shift W_{α}, we let \widetilde{W}_{α} be the Aluthge transform of W_{α}. Then we can see that $\widetilde{W}_{\alpha}=\operatorname{shift}\left(\sqrt{\alpha_{0} \alpha_{1}}, \sqrt{\alpha_{1} \alpha_{2}}, \cdots\right)=$: $\operatorname{shift}\left(\widetilde{\alpha}_{0}, \widetilde{\alpha}_{1}, \cdots\right)$ (called the shift of the geometric mean of a sequence). In [11] we study some properties of the mean transform $\widehat{T}:=\frac{1}{2}(U|T|+|T| U)=$ $\frac{1}{2}\left(U|T|+\widetilde{T}^{D}\right)$. Let \widehat{W}_{α} be the Mean transform of W_{α}. Then we have that $\widehat{W}_{\alpha}=\operatorname{shift}\left(\frac{\alpha_{0}+\alpha_{1}}{2}, \frac{\alpha_{1}+\alpha_{2}}{2}, \cdots\right)=: \operatorname{shift}\left(\widehat{\alpha}_{0}, \widehat{\alpha}_{1}, \cdots\right)$ (called the shift of the arithmetic mean of a sequence). Thus, based on the arithmetic and geometric means of sequences just given above, it is natural to consider hamonic and quadratic means of sequences. For a weighted shift W_{α}, we let $\widetilde{W}_{\alpha}^{H}:=\operatorname{shift}\left(\frac{2 \alpha_{0} \alpha_{1}}{\alpha_{0}+\alpha_{1}}, \frac{2 \alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}, \cdots\right)$ be the hamonic mean transform of W_{α} and $\widetilde{W}_{\alpha}^{Q}:=\operatorname{shift}\left(\sqrt{\frac{\alpha_{0}^{2}+\alpha_{1}^{2}}{2}}, \sqrt{\frac{\alpha_{1}^{2}+\alpha_{2}^{2}}{2}}, \cdots\right)$ be the $q u a$ dratic mean transform of W_{α}, respectively. We call the arithmetic, geometric and hamonic means Pythagorean means.

We say that $T \in \mathcal{B}(\mathcal{H})$ is normal if $T^{*} T=T T^{*}$, subnormal if $T=$ $\left.N\right|_{\mathcal{H}}$, where N is normal and $N(\mathcal{H}) \subseteq \mathcal{H}$, and p-hyponormal if $\left(T^{*} T\right)^{p} \geq$ $\left(T T^{*}\right)^{p}$ for some $p \in(0, \infty)$. If $p=1, T$ is called hyponormal and if $p=\frac{1}{2}, T$ is called semi-hyponormal. It is well known that q-hyponormal operators are p-hyponormal operators for $p<q$ ([1]). It is called that $T \in \mathcal{B}(\mathcal{H})$ is quasinormal if T commutes with $T^{*} T$. It is well known that normal \Longrightarrow quasinormal \Longrightarrow subnormal \Longrightarrow hyponormal.

For $k \geq 1, T \in \mathcal{B}(\mathcal{H})$ is called k-hyponormal if

$$
\left(\begin{array}{ccccc}
I & T^{*} & T^{*^{2}} & \cdots & T^{*^{k}} \\
T & T^{*} T & T^{*^{2}} T & \cdots & T^{*^{k}} T \\
T^{2} & T^{*} T^{2} & T^{*^{2}} T^{2} & \cdots & T^{*^{k}} T^{2} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
T^{k} & T^{*^{2}} T^{k} & T^{*^{2}} T^{k} & \cdots & T^{*^{k}} T^{k}
\end{array}\right)_{(k+1) \times(k+1)} \geq 0
$$

The Bram-Halmos characterization of subnormality ([3, III.1.9]) can be paraphrased as follow: T is subnormal if and only if T is k-hyponormal for every $k \geq 1$ ([4, Proposition 1.9]).

In this paper, we study which transform preserves the k-hyponormality of weighted shifts. For this, we recall: for any $s, t \geq 0$, let $T(s, t):=$ $|T|^{s} U|T|^{t}[14]$, then the Aluthge transform \widetilde{T} of T is $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}=$ $T\left(\frac{1}{2}, \frac{1}{2}\right)$. Now we define a new transform (called the modulus multiplication transform): if $T=U|T|$ is the polar decomposition of T, then
we define

$$
\widetilde{T}^{M}:=T(1,1)=|T| U|T|
$$

and then examine various properties of it. We first recall:
Lemma 1.1. (cf. [14]) Let T be p-hyponormal for some $p>0$. Then for any $s, t \geq 0$ such that $\max (s, t) \leq p$, we have

$$
T(s, t) T(s, t)^{*} \leq|T|^{2(s+t)} \leq T(s, t)^{*} T(s, t)
$$

and for $p<\max (s, t)$, we have
$\left\{T(s, t) T(s, t)^{*}\right\}^{\frac{p+\min (s, t)}{s+t}} \leq|T|^{2\{p+\min (s, t)\}} \leq\left\{T(s, t)^{*} T(s, t)\right\}^{\frac{p+\min (s, t)}{s+t}}$.
Then, we have:
THEOREM 1.2. Let $T=U|T|$ be hyponormal. Then the modulus multiplication transform \widetilde{T}^{M} of T is hyponormal.

Proof. Since T is hyponormal, by Lemma 1.1, for $p, s, t=1$, we have that

$$
\begin{align*}
& T(1,1) T(1,1)^{*} \leq|T|^{4} \leq T(1,1)^{*} T(1,1) \\
& \Longleftrightarrow|T| U^{*}|T|^{2} U|T| \leq|T|^{4} \leq|T| U^{*}|T|^{2} U|T| \tag{1.2}
\end{align*}
$$

Thus, by (1.2), we can see that

$$
\left(\widetilde{T}^{M}\right)^{*} \widetilde{T}^{M}=|T| U^{*}|T|^{2} U|T| \geq|T| U^{*}|T|^{2} U|T|=\widetilde{T}^{M}\left(\widetilde{T}^{M}\right)^{*}
$$

so, the modulus multiplication transform \widetilde{T}^{M} is hyponormal, as desired. This completes the proof.

For the polar decomposition $T=U|T|$ of $T \in \mathcal{B}(\mathcal{H})$, we can easily check that $U|T|=|T| U$ if and only if T is quasinormal. If instead $U^{2}|T|=|T| U^{2}$, then T will be said to be in the δ-class, denoted by $T \in \delta(\mathcal{H})$. We now have:

Theorem 1.3. Let $T=U|T| \in \delta(\mathcal{H})$ be p-hyponormal for $\frac{1}{2} \leq p<1$. Then \widetilde{T}^{M} is hyponormal.

Proof. Since any p-hyponormal operator is semi-hyponormal, we have that $\left(T^{*} T\right)^{\frac{1}{2}} \geq\left(T T^{*}\right)^{\frac{1}{2}}$, that is, $U^{*}|T| U \geq U|T| U^{*}$ which implies

$$
\left(U^{*} U-U U^{*}\right)\left|T^{*}\right| \geq 0
$$

because $T \in \delta(\mathcal{H})$. By the functional calculus, we can observe that

$$
\begin{equation*}
T \in \delta(\mathcal{H}) \Longrightarrow U|T|^{q}=|T|^{q} U \text { for } q>0 \tag{1.3}
\end{equation*}
$$

Thus, by (1.3), we have that

$$
\begin{aligned}
& \left(\left|T^{*}\right|^{\frac{1}{2}}|T|\right)^{*}\left(\left(U^{*} U-U U^{*}\right)\left|T^{*}\right|\right)\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\right) \geq 0 \\
& \Longrightarrow|T|\left|T^{*}\right|^{\frac{1}{2}}\left(U^{*} U-U U^{*}\right)\left|T^{*}\right|\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\right) \geq 0 \\
& \Longrightarrow|T|\left(U^{*}|T|^{\frac{1}{2}} U\left|T^{*}\right|^{\frac{3}{2}}-U|T|^{\frac{1}{2}} U^{*}\left|T^{*}\right|^{\frac{3}{2}}\right)|T| \geq 0 \\
& \Longrightarrow|T| U^{*}|T|^{2} U|T|-|T| U|T|^{2} U^{*}|T| \geq 0 \\
& \Longrightarrow\left(\widetilde{T}^{M}\right)^{*}\left(\widetilde{T}^{M}\right)-\left(\widetilde{T}^{M}\right)\left(\widetilde{T}^{M}\right)^{*} \geq 0 .
\end{aligned}
$$

Therefore, \widetilde{T}^{M} is hyponormal, as desired.
For the hyponormality of the modulus multiplication transform for the p-hyponormality of $T=U|T|$ for $\frac{1}{2} \leq p<1$, we recall the following result.

Lemma 1.4. (cf. [1]) If A and B are bounded self-adjoint operators such that $A \geq B \geq 0$. Then for each $r \geq 0$,

$$
\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}} \geq B^{\frac{p+2 r}{q}}
$$

and

$$
A^{\frac{p+2 r}{q}} \geq\left(A^{r} B^{p} A^{r}\right)^{\frac{1}{q}}
$$

hold for each p and q such that $p \geq 0, q \geq 1$, and $\frac{1+2 r}{q} \geq p+2 r$.
Theorem 1.5. Let $T=U|T|$ be p-hyponormal for $0<p<\frac{1}{2}$. Then \widetilde{T}^{M} is $\left(\frac{1+p}{2}\right)$-hyponormal.

Proof. From the p-hyponormality of T, we have that $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$, that is,

$$
U^{*}|T|^{2 p} U \geq|T|^{2 p} \geq U|T|^{2 p} U^{*} .
$$

Let

$$
A:=U^{*}|T|^{2 p} U, B:=|T|^{2 p}, \text { and } C:=U|T|^{2 p} U^{*} .
$$

By Lemma 1.4, we then have

$$
\begin{aligned}
& \left(\left(\widetilde{T}^{M}\right)^{*}\left(\widetilde{T}^{M}\right)\right)^{\frac{1+p}{2}}=\left(|T| U^{*}|T|^{2} U|T|\right)^{\frac{1+p}{2}}=\left(B^{\frac{1}{2 p}} A^{\frac{1}{p}} B^{\frac{1}{2 p}}\right)^{\frac{1+p}{2}} \\
& \left.\geq\left(B^{\left(\frac{1}{p}+\frac{1}{p}\right)}\right)\right)^{\frac{1+p}{2}}=B^{\frac{p+1}{p}} \geq\left(B^{\frac{1}{2 p}} C^{\frac{1}{p}} B^{\frac{1}{2 p}}\right)^{\frac{1+p}{2}}=\left(|T| U|T|^{2} U^{*}|T|\right)^{\frac{1+p}{2}} \\
& =\left(\left(\widetilde{T}^{M}\right)\left(\widetilde{T}^{M}\right)^{*}\right)^{\frac{1+p}{2}},
\end{aligned}
$$

because

$$
\frac{2}{p}=\frac{2}{p} \Longleftrightarrow\left(1+\frac{1}{p}\right)\left(\frac{1+p}{2}\right)=\frac{2}{p} \Longleftrightarrow\left(1+2 \frac{1}{2 p}\right)\left(\frac{1+p}{2}\right)=\frac{1}{p}+\frac{1}{p} .
$$

Therefore, \widetilde{T}^{M} is $\left(\frac{1+p}{2}\right)$-hyponormal, as desired.
Remark 1.6. From Theorem 1.3, we may ask that for $\frac{1}{2} \leq p<1$, if T is p-hyponormal, does it follow that the modulus multiplication transform \widetilde{T}^{M} is hyponormal?

Note that Aluthge, mean, hamonic and quadratic transforms of weighted shifts need not preserve the k-hyponormality. In contrast to those transforms, the modulus multiplication transform $\widetilde{W}_{\alpha}^{M}$ of W_{α} preserves the k-hyponormality of W_{α}. For this, recall that for matrices $A, B \in M_{n}(\mathbb{C})$, we let $A \circ B$ denote their Schur product, i.e., $(A \circ B)_{i j}:=A_{i j} B_{i j}(1 \leq$ $i, j \leq n)$. The following result is well known: If $A \geq 0$ and $B \geq 0$, then $A \circ B \geq 0([12])$. For matrices $A, B \in M_{n}(\mathbb{C})$, we let $A \circ B$ denote their Schur product. For $\alpha \equiv\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\beta \equiv\left\{\beta_{n}\right\}_{n=0}^{\infty}$, the Schur product of α and β is defined by $\alpha \circ \beta:=\left\{\alpha_{n} \beta_{n}\right\}_{n=0}^{\infty}$. Thus, for given two 1 -variable subnormal weighted shifts W_{α} and W_{β}, their Schur product $W_{\alpha} \circ W_{\beta}$, which we denote by $W_{\alpha \beta}$, is subnormal. That is, if W_{α} and W_{β} are k-hyponormal $(k \geq 1) 1$-variable weighted shifts, then the Schur product
(1.4) $W_{\alpha \beta} \equiv W_{\alpha} \circ W_{\beta}$ is a k-hyponormal 1-variable weighted shift [5].

Now we have:
Theorem 1.7. Let W_{α} is k-hyponormal for $k \geq 1$. Then the modulus multiplication transform $\widetilde{W}_{\alpha}^{M}$ of W_{α} is also k-hyponormal.

Proof. Note that the polar decomposition of W_{α} is $U_{+} D_{\alpha}$, where $D_{\alpha}:=\operatorname{diag}\left(\alpha_{0}, \alpha_{1}, \cdots\right)$. Hence, we have that $\widetilde{W}_{\alpha}^{M}=D_{\alpha} U_{+} D_{\alpha}$. For
$n \geq 0$ and the orthonormal basis $\left\{e_{n}\right\}_{n=0}^{\infty}$ for $\ell^{2}\left(\mathbb{Z}_{+}\right)$, we can see that

$$
D_{\alpha} U_{+} D_{\alpha}\left(e_{n}\right)=\alpha_{n} D_{\alpha} U_{+}\left(e_{n}\right)=\alpha_{n} D_{\alpha}\left(e_{n+1}\right)=\alpha_{n} \alpha_{n+1} e_{n+1}
$$

Therefore, we get that

$$
\widetilde{W}_{\alpha}^{M}\left(e_{n}\right)=D_{\alpha} U_{+} D_{\alpha}\left(e_{n}\right)=\left(\alpha_{n} \alpha_{n+1}\right) e_{n+1},
$$

that is,

$$
\widetilde{W}_{\alpha}^{M}=\operatorname{shift}\left(\alpha_{0} \alpha_{1}, \alpha_{1} \alpha_{2}, \alpha_{2} \alpha_{3}, \cdots\right) .
$$

Assume that W_{α} is k-hyponormal. Let $\mathcal{L}_{n}:=\bigvee\left\{e_{h}: h \geq n\right\}$ denote the invariant subspace obtained by removing the first n vectors in the canonical orthonormal basis of $\ell^{2}\left(\mathbb{Z}_{+}\right)$. For $n \geq 0$, we also let $\left.\operatorname{shift}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots\right)\right|_{\mathcal{L}_{n}}:=\operatorname{shift}\left(\alpha_{n}, \alpha_{n+1}, \alpha_{n+2}, \cdots\right)$. Then $W_{\alpha} \mid \mathcal{L}_{1}$ is also k-hyponormal. Thus by (1.4), $\widetilde{W}_{\alpha}^{M}$ is k-hyponormal, as desired.

By the Bram-Halmos criterion for subnormality and Theorem 1.7, we have:

Corollary 1.8. If W_{α} is subnormal, then $\widetilde{W}_{\alpha}^{M}$ is also subnormal.
From ([7], [11]), we recall that the Aluthge transform map $T \rightarrow \widetilde{T}$ is $(\|\cdot\|,\|\cdot\|)$ - continuous on $\mathcal{B}(\mathcal{H})$ and the Duggal transform map $T \rightarrow \widetilde{T}^{D}$ and the mean transform map $T \rightarrow \widehat{T}$ are both $(\|\cdot\|, S O T)$ - continuous on $\mathcal{B}(\mathcal{H})$, respectively. Similarly, we have the following.

Theorem 1.9. The modulus multiplication transform map $T \rightarrow \widetilde{T}^{M}$ is $(\|\cdot\|,\|\cdot\|)$ - continuous on $\mathcal{B}(\mathcal{H})$.

Proof. Let T_{0} be arbitrary in $\mathcal{B}(\mathcal{H})$ and suppose that a sequence $\left\{T_{n}=U_{n}\left|T_{n}\right|\right\}$ converges in norm to $T_{0}=U_{0}\left|T_{0}\right|$. Since the mappings $T \rightarrow T^{*}$ and $(S, T) \rightarrow S T$ are norm continuous, it follows that

$$
\begin{equation*}
\left\|\left|T_{n}\right|-\left|T_{0}\right|\right\| \rightarrow 0 \tag{1.5}
\end{equation*}
$$

By (1.5), we can observe that

$$
\begin{aligned}
& \left\|\widetilde{T}_{n}^{M}-\widetilde{T}_{0}^{M}\right\|=\left\|\left|T_{n}\right| U_{n}\left|T_{n}\right|-\left|T_{0}\right| U_{0}\left|T_{0}\right|\right\| \\
& \leq\left\|\left|T_{n}\right| U_{n}\left|T_{n}\right|-\left|T_{0}\right| U_{n}\left|T_{n}\right|\right\|+\left\|\left|T_{0}\right| U_{n}\left|T_{n}\right|-\left|T_{0}\right| U_{0}\left|T_{0}\right|\right\| \\
& \leq\left\|\left|T_{n}\right|-\left|T_{0}\right|\right\|\left\|U_{n}\left|T_{n}\right|\right\|+\left\|\left|\left|T_{0}\right|\| \| U_{n}\right| T_{n}\left|-U_{0}\right| T_{0} \mid\right\| \rightarrow 0
\end{aligned}
$$

Thus, we have that $\left\{\widetilde{T}_{n}^{M}\right\}$ converges in norm to \widetilde{T}_{0}^{M}, as desired.

References

[1] A. Aluthge, On p-hyponormal Operators for $0<p<1$, Integral Equations Operator Theory, 13 (1990), 307-315.
[2] M. Cho, I. B. Jung, and W. Y. Lee, On Aluthge Transforms of p-hyponormal Operators, Integral Equations Operator Theory, 53 (2005), 321-329.
[3] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, Amer. Math. Soc. Providence, 1991.
[4] R. Curto, P. Muhly, and J. Xia, Hyponormal pairs of commuting operators, Operator Theory: Adv. Appl. 35 (1988), 1-22.
[5] R. Curto and S. Park, k-hyponormality of powers of weighted shifts, Proc. Amer. Math. Soc. 131 (2003), 2761-2769.
[6] R. Curto, Y. Poon, and J. Yoon, Subnormality of Bergman-like weighted shifts, J. Math. Anal. Appl. 308 (2005), 334-342.
[7] K. Dykema and H. Schultz, Brown measure and iterates of the Aluthge transform for some operators arising from measurable actions, Trans. Amer. Math. Soc. 361 (2009), 6583-6593.
[8] G. R. Exner, Aluthge transforms and $\$ n \$ n$-contractivity of weighted shifts, J. Operator Theory, 61 (2009), no. 2, 419-438.
[9] C. Foias, I. Jung, E. Ko, and C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal transformations, Pacific J. Math. 209 (2003), 249359.
[10] S. H. Lee, W. Y. Lee, and J. Yoon, Subnormality of Aluthge transform of weighted shifts, Integral Equations Operator Theory, 72 (2012), 241-251.
[11] S. H. Lee, W. Y. Lee, and J. Yoon, The mean transform of bounded linear operators, J. Math. Anal. Appl. 410 (2014), 70-81.
[12] V. Paulsen, Completely bounded maps and dilations, Pitmam Research Notes in Mathematics Series, vol. 146, Longman Sci. Tech. New York, 1986.
[13] T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc. 130 (2002), 1131-1137.
[14] T. Yoshino, The p-Hyponormality of the Aluthge transformation, Interdiscip. Inform. Sci. 3 (1997), 91-93.

*

Department of Mathematics Education
Sangmyung University
Seoul 03016, Republic of Korea
E-mail: jilee@smu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejon 34134, Republic of Korea
E-mail: slee@cnu.ac.kr

[^0]: Received July 30, 2018; Accepted July 31, 2018.
 2010 Mathematics Subject Classification: Primary 47B20, 47B37, 47A13, 28A50; Secondary 44A60, 47-04, 47A20.

 Key words and phrases: Aluthge transform, modulus multiplication transform, subnormal, k-hyponormal, weighted shifts.
 *Supported by Research Grant from Sangmyung University .
 **This work was supported by research fund of Chungnam National University.
 Correspondence should be addressed to Sang Hoon Lee, slee@cnu.ac.kr.

