ON CARLESON'S INEQUALITY II

Ern Gun Kwon*

Abstract. We present a new and simple proof of improved Carleson's inequality.

1. Introduction

The classical Hardy's inequality reads:

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(y) d y\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(x) d x \tag{1.1}
\end{equation*}
$$

where f is a nonnegative measurable function on $(0, \infty)$ and $p>1$. A weighted modification of (1.1) was proved also by Hardy [4] as

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(y) d y\right)^{p} x^{\alpha} d x \leq\left(\frac{p}{p-1-\alpha}\right)^{p} \int_{0}^{\infty} f^{p}(x) x^{\alpha} d x \tag{1.2}
\end{equation*}
$$

where f is a nonnegative measurable function on $(0, \infty), p>1$, and $\alpha<p-1$. The constant

$$
\left(\frac{p}{p-1-\alpha}\right)^{p}
$$

is the best possible.
The importance and the usefulness of these inequalities could never have been overestimated. As a limit versions of Hardy's inequality, the following inequality appeared in the literature. See [5] and [9].

Theorem A (Polya-Knopp inequality).

$$
\begin{equation*}
\int_{0}^{\infty} \exp \left\{\frac{1}{x} \int_{0}^{x} \ln f(t) d t\right\} d x \leq e \int_{0}^{\infty} f(x) d x \tag{1.3}
\end{equation*}
$$

for any measurable $f \geq 0$.
Received July 23, 2018; Accepted July 31, 2018.
2010 Mathematics Subject Classification: 26D10; 26A15; 26A51.
Key words and phrases: Carleson's inequality, Polya-Knopp inequality, Hardy inequality, Hölder's inequality.
*This work was supported by a Research Grant of of Andong National University.

The discrete version of inequality (1.3) is the famous Carleman's inequality [2]. Being a limiting form of Hardy's inequality (1.1) and a continuous form of Carleman's inequality, (1.3) has attracted a lot of attention and its extensions have been investigated frequently. See for example [3] and the references therein. Among extensions of (1.3) is the following result of L. Carleson.

Theorem B (Carleson's inequality). Let $F(x)$ be a convex function for $x \geq 0$, satisfying $F(0)=0$. If $-1<\alpha<\infty$, the following inequality holds true:

$$
\begin{equation*}
\int_{0}^{\infty} x^{\alpha} e^{-F(x) / x} d x \leq e^{\alpha+1} \int_{0}^{\infty} x^{\alpha} e^{-F^{\prime}(x)} d x . \tag{1.4}
\end{equation*}
$$

See [1]. Theorem B gives, for any measurable $f \geq 0$, that

$$
\begin{equation*}
\int_{0}^{\infty} x^{\alpha} \exp \left\{\frac{1}{x} \int_{0}^{x} \ln f(t) d t\right\} d x \leq e^{\alpha+1} \int_{0}^{\infty} f(x) x^{\alpha} d x \tag{1.5}
\end{equation*}
$$

whence Theorem B extends Theorem A. See [7]. So, (1.3) is a special case of (1.5), and (1.5) can be regarded as a special case of (1.4) as well as a limiting case of (1.2).

The goal of this note is to present a new and simple proof of the following improved version of Carleson's inequality.

Theorem 1.1. Let $0<b \leq \infty$. Let $F(x)$ be a real valued function, differentiable almost everywhere on ($0, b$), continuous on $[0, b$) with $F(0)=0$. If $-1<\alpha<\infty$, then the following inequality holds true:

$$
\begin{equation*}
\int_{0}^{b} x^{\alpha} e^{F(x) / x} d x \leq e^{\alpha+1} \int_{0}^{b}\left(1-\frac{x}{b}\right) x^{\alpha} e^{F^{\prime}(x)} d x . \tag{1.6}
\end{equation*}
$$

As was shown in [1] and [9], the proofs of Carleson's inequality and its L^{p} version inequality there depended heavily on the convexity of F. The most striking fact of Theorem 1.1 may be that the convexity assumption on F in Theorem B is removed. Note that the convexity of F implies the continuity of F and the existence of F^{\prime} almost everywhere. Instead, our proof depends on the following inequality, called the continuous form of Hölder's inequality (see [6, 8]).

Theorem C (Continuous form of Hölder's inequality). Let $X=$ (X, μ) be a probability measure space and $Y=(Y, \nu)$ be a positive σ finite measure space. Let $f(x, y)$ be a positive measurable function on
$X \times Y$. Then

$$
\begin{align*}
\int_{Y} \exp & \left(\int_{X} \ln f(x, y) d \mu(x)\right) d \nu(y) \tag{1.7}\\
& \leq \exp \left\{\int_{X} \ln \left(\int_{Y} f(x, y) d \nu(y)\right) d \mu(x)\right\}
\end{align*}
$$

Equality holds in (1.7) as a nonzero finite value if and if only if $f(x, y)=$ $g(x) h(y)$ almost everywhere $\mu \times \nu$ for a positive μ-measurable function g with $-\infty<\int_{X} \ln g d \mu<\infty$ and a positive ν-measurable h with $\int_{Y} h d \nu=1$.

2. Proof of Theorem 1.1

Note that

$$
\begin{equation*}
\frac{F(x)}{x}=\int_{0}^{1} F^{\prime}(x y) d y, \quad x \in(0, b) \tag{2.1}
\end{equation*}
$$

For simplicity, let $G=\exp F^{\prime}$. Then by (2.1)

$$
\begin{align*}
\int_{0}^{b} x^{\alpha} \exp \left\{\frac{F(x)}{x}\right\} d x & =\int_{0}^{b} x^{\alpha} \exp \left\{\int_{0}^{1} F^{\prime}(x y) d y\right\} d x \tag{2.2}\\
& =\int_{0}^{b} x^{\alpha} \exp \left\{\int_{0}^{1} \ln G(x y) d y\right\} d x
\end{align*}
$$

Applying (1.7) we obtain

$$
\begin{equation*}
\int_{0}^{b} x^{\alpha} \exp \left\{\int_{0}^{1} \ln G(x y) d y\right\} d x \leq \exp \left[\int_{0}^{1} \ln \left(\int_{0}^{b} x^{\alpha} G(x y) d x\right) d y\right] \tag{2.3}
\end{equation*}
$$

On the other hand, a straightforward calculation gives

$$
\begin{align*}
& \exp \left[\int_{0}^{1} \ln \left(\int_{0}^{b} x^{\alpha} G(x y) d x\right) d y\right] \\
& =\exp \left[\int_{0}^{1} \ln \left(\frac{1}{y^{\alpha+1}} \int_{0}^{b y} x^{\alpha} G(x) d x\right) d y\right] \tag{2.4}\\
& =e^{\alpha+1} \cdot \exp \left[\int_{0}^{1} \ln \left(\int_{0}^{b y} x^{\alpha} G(x) d x\right) d y\right] .
\end{align*}
$$

By the convexity of the exponential function and by changing the order of the integration,

$$
\begin{align*}
\exp & {\left[\int_{0}^{1} \ln \left(\int_{0}^{b y} x^{\alpha} G(x) d x\right) d y\right] } \\
& \leq \int_{0}^{1}\left(\int_{0}^{b y} x^{\alpha} G(x) d x\right) d y \\
& =\int_{0}^{b} x^{\alpha} G(x) \int_{x / b}^{1} d y d x \tag{2.5}\\
& =\int_{0}^{b}\left(1-\frac{x}{b}\right) x^{\alpha} G(x) d x
\end{align*}
$$

Inequality (1.6) now follow from (2.1) $\sim(2.5)$. The proof is complete.

References

1. L. Carleson, A proof of an inequality of Carleman, Proc. Amer. Math. Soc. 5 (1954), 932-933.
2. T. Carleman, Sur les fonctions quasi-analytiques, Conférences faites au cinquiéme congres des mathématiciens Scandinaves, Helsinki, (1923), 181-196.
3. A. Čižmešija, J. Pečarić, and L. E. Persson, On strengthened Hardy and PólyaKnopp's inequalities, Journal of Approximation Theory, 125 (2003), 74-84.
4. G. H. Hardy, Notes on some points in the integral calculus, LXIV. Further inequalities between integrals, Messenger of Math. 57 (1928), 12-16.
5. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd ed. Cambridge University Press, Cambridge, England, 1988.
6. E. G. Kwon, Extension of Hölder's inequality (I), Bull. Austral. Math. Soc. 51 (1995), 369-375.
7. E. G. Kwon, On Carleson's inequality, Journal of Inequalities and Applications, 2018:91 (2018), 6pages. https://doi.org/10.1186/s13660-018-1682-2.
8. E. G. Kwon and E. K. Bae, On a continuous form of Hölder inequality, Jour. Math. Anal. Appl. 343 (2008), 585-592.
9. K. Knopp, Über reihen mit positiven gliedern, J. London Math. Soc. 3 (1928), 205-211.

*

Department of Math-Education
Andong National University
Andong 36729, Republic of Korea
E-mail: egkwon@anu.ac.kr

