References
- K. Baghaei and M. Hesaaraki, Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations, C. R. Acad. Sci. Paris. Ser. I. 351 (2013), 731-735. https://doi.org/10.1016/j.crma.2013.09.024
- C. Bandle and H. Brunner, Blow-up in diffusion equations: A survey, J. Comput. Appl. Math. 97 (1998), 3-22. https://doi.org/10.1016/S0377-0427(98)00100-9
- J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.
- C. Enache, Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition, Appl. Math. Lett. 24 (2011), 288-292. https://doi.org/10.1016/j.aml.2010.10.006
- Z. B. Fang and Y. Chai, Blow-up analysis for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition, Abstr. Appl. Anal. 2014, Article ID289245, (2014), 8 pages.
- Z. B. Fang, R. Yang, and Y. Chai, Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption, Math. Probl. Eng. 2014 Article ID764248, (2014), 6 pages.
- Z. B. Fang and Y. X. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys. 66 (2015), 2525-2541. https://doi.org/10.1007/s00033-015-0537-7
- J. Filo, Diffusivity versus absorption through the boundary, J. Diff. Eq. 99 (1992), 281-305. https://doi.org/10.1016/0022-0396(92)90024-H
- V. A. Galaktionov and J. L. Vazquez, The problem of blow up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst. 8 (2002), 399-433. https://doi.org/10.3934/dcds.2002.8.399
- H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann. 214 (1975), 205-220. https://doi.org/10.1007/BF01352106
- H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990), 262-288. https://doi.org/10.1137/1032046
- H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for porous medium equation backward in time, J. Diff. Eq. 16 (1974), 319-334. https://doi.org/10.1016/0022-0396(74)90018-7
- Y. F. Li, Y. Liu, and C. H. Lin, Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions, Nonlinear Anal. RWA, 11 (2010), 3815-3823. https://doi.org/10.1016/j.nonrwa.2010.02.011
- M. Marras and S. Vernier Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Cont. Dyn. S. Supplement, 2013(special), (2013), 535-544.
- C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
- L. E. Payne and G. A. Philippin, Blow-up in a class of non-linear parabolic problems with time dependent coefficients under Robin type boundary conditions, Appl. Anal. 91 (2012), 2245-2256. https://doi.org/10.1080/00036811.2011.598865
- L. E. Payne and G. A. Philippin, Blow-up phenonmena in parabolic problems with time dependent coefficients under Neumann Boundary conditions, P. Roy. Soc. Edinb. A. (2012), 625-631.
- L. E. Payne and G. A. Philippin, Blow-up phenonmena in parabolic problems with time dependent coefficients under Dirichlet Boundary conditions, P. Am. Math. Soc. 141 (2013), 2309-2318. https://doi.org/10.1090/S0002-9939-2013-11493-0
- L. E. Payne, G. A. Philippin, and S. V. Piro, Blow-up phenonmena for a semilinear heat equation with nonlinear boundary condition. II, Nonlinear Anal. 73 (2010), 971-978. https://doi.org/10.1016/j.na.2010.04.023
- L. E. Payne, G. A. Philippin, and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. 69 (2008), 3495-3502. https://doi.org/10.1016/j.na.2007.09.035
- R. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhauser Advanced Texts, Basel, 2007.
- A. A. Samarskii, V. A. Galaktionov, S. P.Kurdyumov, and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations. Walter de Gruyter, Berlin, 1995.
- B. Straughan, Explosive Instabilities in Mechanics, Springer, Berlin, 1998.
- J. L. Vazquez, The Porous Medium Equations: Mathematical Theory, Oxford: Oxford University Press, Oxford, 2007.