DOI QR코드

DOI QR Code

BLOW-UP PHENOMENA FOR A QUASILINEAR PARABOLIC EQUATION WITH TIME-DEPENDENT COEFFICIENTS UNDER NONLINEAR BOUNDARY FLUX

  • Kwon, Tae In (Department of Mathematics Changwon National University) ;
  • Fang, Zhong Bo (School of Mathematical Sciences Ocean University of China)
  • Received : 2018.03.06
  • Accepted : 2018.07.12
  • Published : 2018.08.15

Abstract

This paper deals with blow-up phenomena for an initial boundary value problem of a quasilinear parabolic equation with time-dependent coefficient in a bounded star-shaped region under nonlinear boundary flux. Using the auxiliary function method and differential inequality technique, we establish some conditions on time-dependent coefficient and nonlinear functions for which the solution u(x, t) exists globally or blows up at some finite time $t^*$. Moreover, some upper and lower bounds for $t^*$ are derived in higher dimensional spaces. Some examples are presented to illustrate applications of our results.

Keywords

References

  1. K. Baghaei and M. Hesaaraki, Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations, C. R. Acad. Sci. Paris. Ser. I. 351 (2013), 731-735. https://doi.org/10.1016/j.crma.2013.09.024
  2. C. Bandle and H. Brunner, Blow-up in diffusion equations: A survey, J. Comput. Appl. Math. 97 (1998), 3-22. https://doi.org/10.1016/S0377-0427(98)00100-9
  3. J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.
  4. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.
  5. C. Enache, Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition, Appl. Math. Lett. 24 (2011), 288-292. https://doi.org/10.1016/j.aml.2010.10.006
  6. Z. B. Fang and Y. Chai, Blow-up analysis for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition, Abstr. Appl. Anal. 2014, Article ID289245, (2014), 8 pages.
  7. Z. B. Fang, R. Yang, and Y. Chai, Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption, Math. Probl. Eng. 2014 Article ID764248, (2014), 6 pages.
  8. Z. B. Fang and Y. X. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys. 66 (2015), 2525-2541. https://doi.org/10.1007/s00033-015-0537-7
  9. J. Filo, Diffusivity versus absorption through the boundary, J. Diff. Eq. 99 (1992), 281-305. https://doi.org/10.1016/0022-0396(92)90024-H
  10. V. A. Galaktionov and J. L. Vazquez, The problem of blow up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst. 8 (2002), 399-433. https://doi.org/10.3934/dcds.2002.8.399
  11. H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann. 214 (1975), 205-220. https://doi.org/10.1007/BF01352106
  12. H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990), 262-288. https://doi.org/10.1137/1032046
  13. H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for porous medium equation backward in time, J. Diff. Eq. 16 (1974), 319-334. https://doi.org/10.1016/0022-0396(74)90018-7
  14. Y. F. Li, Y. Liu, and C. H. Lin, Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions, Nonlinear Anal. RWA, 11 (2010), 3815-3823. https://doi.org/10.1016/j.nonrwa.2010.02.011
  15. M. Marras and S. Vernier Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Cont. Dyn. S. Supplement, 2013(special), (2013), 535-544.
  16. C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
  17. L. E. Payne and G. A. Philippin, Blow-up in a class of non-linear parabolic problems with time dependent coefficients under Robin type boundary conditions, Appl. Anal. 91 (2012), 2245-2256. https://doi.org/10.1080/00036811.2011.598865
  18. L. E. Payne and G. A. Philippin, Blow-up phenonmena in parabolic problems with time dependent coefficients under Neumann Boundary conditions, P. Roy. Soc. Edinb. A. (2012), 625-631.
  19. L. E. Payne and G. A. Philippin, Blow-up phenonmena in parabolic problems with time dependent coefficients under Dirichlet Boundary conditions, P. Am. Math. Soc. 141 (2013), 2309-2318. https://doi.org/10.1090/S0002-9939-2013-11493-0
  20. L. E. Payne, G. A. Philippin, and S. V. Piro, Blow-up phenonmena for a semilinear heat equation with nonlinear boundary condition. II, Nonlinear Anal. 73 (2010), 971-978. https://doi.org/10.1016/j.na.2010.04.023
  21. L. E. Payne, G. A. Philippin, and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. 69 (2008), 3495-3502. https://doi.org/10.1016/j.na.2007.09.035
  22. R. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhauser Advanced Texts, Basel, 2007.
  23. A. A. Samarskii, V. A. Galaktionov, S. P.Kurdyumov, and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations. Walter de Gruyter, Berlin, 1995.
  24. B. Straughan, Explosive Instabilities in Mechanics, Springer, Berlin, 1998.
  25. J. L. Vazquez, The Porous Medium Equations: Mathematical Theory, Oxford: Oxford University Press, Oxford, 2007.