DOI QR코드

DOI QR Code

Effects of aspect ratio on laboratory simulation of tornado-like vortices

  • Tang, Zhuo (National Wind Institute, Texas Tech University) ;
  • Zuo, Delong (National Wind Institute, Texas Tech University) ;
  • James, Darryl (Department of Mechanical Engineering, Texas Tech University) ;
  • Eguch, Yuzuru (Fluid Dynamics Sector, Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry) ;
  • Hattori, Yasuo (Fluid Dynamics Sector, Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry)
  • Received : 2018.04.12
  • Accepted : 2018.07.09
  • Published : 2018.08.25

Abstract

Experiments were conducted in a large-scale Ward-type tornado simulator to study tornado-like vortices. Both flow velocities and the pressures at the surface beneath the vortices were measured. An interpretation of these measurements enabled an assessment of the mean flow field as well as the mean and fluctuating characteristics of the surface pressure deficit, which is a manifestation of the flow fluctuation aloft. An emphasis was placed on the effect of the aspect ratio of the tornado simulator on the characteristics of the simulated flow and the corresponding surface pressure deficit, especially the evolution of these characteristics due to the transition of the flow from a single-celled vortex to a two-celled vortex with increasing swirl ratio.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. Aboshosha, H., Elshaer, A., Bitsuamlak, G.T. and El Damatty, A. (2015), "Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings", J. Wind Eng. Ind. Aerod., 142, 198-216. https://doi.org/10.1016/j.jweia.2015.04.004
  2. Bryan, G.H., Dahl, N.A., Nolan, D.S. and Rotunno, R. (2017), "An eddy injection method for large-eddy simulations of tornado-like vortices", Mon. Weather Rev., 145(5), 1937-1961. https://doi.org/10.1175/MWR-D-16-0339.1
  3. Burgers, J.M. (1948), "A Mathematical Model Illustrating the Theory of Turbulence", Advances in Applied Mechanics, (Eds., M. Richard Von, and K. Theodore Von), 171-199.
  4. Church, C.R., Snow, J.T., Baker, G.L. and Agee, E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: a laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2
  5. Davies-Jones, R.P. (1973), "The dependence of core radius on swirl ratio in a tornado simulator", J. Atmos. Sci., 30(7), 1427-1430. https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2
  6. Fujita, T.T. (1971), Proposed characterization of tornadoes and hurricanes by area and intensity: Chicago.
  7. Haan, F.L., Jr, Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010
  8. Ishihara, T., Oh, S. and Tokuyama, Y. (2011), "Numerical study on flow fields of tornado-like vortices using the LES turbulence model", J. Wind Eng. Ind. Aerod., 99(4), 239-248. https://doi.org/10.1016/j.jweia.2011.01.014
  9. Jischke, M.C. and Parang, M. (1974), "Properties of simulated tornado-like vortices", J. Atmos. Sci., 31(2), 506-512. https://doi.org/10.1175/1520-0469(1974)031<0506:POSTLV>2.0.CO;2
  10. Karstens, C.D., Samaras, T.M., Lee, B.D., Gallus, W.A. and Finley, C.A. (2010), "Near-ground pressure and wind measurements in tornadoes", Mon. Weather Rev., 138(7), 2570-2588. https://doi.org/10.1175/2010MWR3201.1
  11. Lewellen, W.S. (1962), "A solution for three-dimensional vortex flows with strong circulation", J. Fluid Mech., 14(3), 420-432. https://doi.org/10.1017/S0022112062001330
  12. Lewellen, W.S., Lewellen, D.C. and Sykes, R.I. (1997), "Largeeddy simulation of a tornado's interaction with the surface", J. Atmos. Sci., 54(5), 581-605. https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2
  13. Liu, K. and Pletcher, R.H. (2006), "Inflow conditions for the large eddy simulation of turbulent boundary layers: A dynamic recycling procedure", J. Comput. Phys., 219(1), 1-6. https://doi.org/10.1016/j.jcp.2006.04.004
  14. Liu, Z., Liu, H. and Cao, S. (2018), "Numerical study of the structure and dynamics of a tornado at the sub-critical vortex breakdown stage", J. Wind Eng. Ind. Aerod., 177, 306-326. https://doi.org/10.1016/j.jweia.2018.04.009
  15. Liu, Z., Zhang, C. and Ishihara, T. (2018), "Numerical study of the wind loads on a cooling tower by a stationary tornado-like vortex through LES", J. Fluid. Struct., 81, 656-672. https://doi.org/10.1016/j.jfluidstructs.2018.06.001
  16. Mehta, K.C., Minor, J.E. and McDonald, J.R. (1976), "Wind speeds analyses of April 3-4, 1974 tornadoes", J. Struct. Div. -ASCE, 102(9), 1709-1724.
  17. Nasir, Z. (2017), "Numerical modeling of tornado-like vortex and its interaction with bluff-bodies", PhD Dissertation, University of Western Ontario.
  18. Natarajan, D. and Hangan, H. (2012), "Large eddy simulations of translation and surface roughness effects on tornado-like vortices", J. Wind Eng. Ind. Aerod., 104-106, 577-584. https://doi.org/10.1016/j.jweia.2012.05.004
  19. Nolan, D.S. and Farrell, B.F. (1999), "The structure and dynamics of tornado-like vortices", J. Atmos. Sci., 56(16), 2908-2936. https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2
  20. Nolan, D.S., Dahl, N.A., Bryan, G.H. and Rotunno, R. (2017), "Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed tTurbulence", J. Atmos. Sci., 74(5), 1573-1597. https://doi.org/10.1175/JAS-D-16-0258.1
  21. Refan, M. and Hangan, H. (2016), "Characterization of tornadolike flow fields in a new model scale wind testing chamber", J. Wind Eng. Ind. Aerod., 151, 107-121. https://doi.org/10.1016/j.jweia.2016.02.002
  22. Refan, M. and Hangan, H. (2018), "Near surface experimental exploration of tornado vortices", J. Wind Eng. Ind. Aerod., 175, 120-135. https://doi.org/10.1016/j.jweia.2018.01.042
  23. Rott, N. (1958), "On the viscous core of a line vortex", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 9(5), 543-553. https://doi.org/10.1007/BF02424773
  24. Snow, J.T., Church, C.R. and Barnhart, B.J. (1980), "An investigation of the surface pressure fields beneath simulated tornado cyclones", J. Atmos. Sci., 37(5), 1013-1026. https://doi.org/10.1175/1520-0469(1980)037<1013:AIOTSP>2.0.CO;2
  25. Sullivan, R.D. (1959), "A two-cell vortex solution of the navierstokes equations", J. Aerosp. Sci., 26(11), 767-768. https://doi.org/10.2514/8.8303
  26. Tabor, G.R. and Baba-Ahmadi, M.H. (2010), "Inlet conditions for large eddy simulation: A review", Comput. Fluids, 39(4), 553-567. https://doi.org/10.1016/j.compfluid.2009.10.007
  27. Tang, Z., Feng, C., Wu, L., Zuo, D. and James, D.L. (2018), "Characteristics of tornado-like vortices simulated in a largescale ward-type simulator", Bound.-Lay. Meteorol., 166(2), 327-350. https://doi.org/10.1007/s10546-017-0305-7
  28. Tang, Z., Zuo, D., James, D., Eguchi, Y. and Hattori, Y. (2018), "Effects of aspect ratio on laboratory simulation of tornado-like vortices", Wind Struct., Under review.
  29. Ward, N.B. (1972), "The exploration of certain features of Tornado dynamics using a laboratory model", J. Atmos. Sci., 29(6), 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2
  30. Wurman, J. and Gill, S. (2000), "Finescale radar observations of the dimmitt, Texas (2 June 1995), tornado", Mon. Weather Rev., 128(7), 2135-2164. https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2
  31. Wurman, J., Kosiba, K. and Robinson, P. (2013), "In situ, doppler radar, and video observations of the interior structure of a tornado and the wind-damage relationship", Bull. Am. Meteorol. Soc., 94(6), 835-846. https://doi.org/10.1175/BAMS-D-12-00114.1
  32. Wurman, J., Robinson, P., Alexander, C. and Richardson, Y. (2007), "Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas", Bull. Am. Meteorol. Soc., 88(1), 31-46. https://doi.org/10.1175/BAMS-88-1-31
  33. Yang, Q., Gao, R., Bai, F., Li, T. and Tamura, Y. (2018), "Damage to buildings and structures due to recent devastating wind hazards in East Asia", Nat. Hazards, 92(3), 1321-1353. https://doi.org/10.1007/s11069-018-3253-8

Cited by

  1. Simulating tornado-like flows: the effect of the simulator’s geometry vol.54, pp.15, 2019, https://doi.org/10.1007/s11012-019-01082-4