DOI QR코드

DOI QR Code

시설오이에서 총채벌레류 발생소장 및 5 지역계통 꽃노랑총채벌레의 약제반응

Occurrence of Thrips in Greenhouse Cucumber and Insecticidal Activity of Five Local Western Flower Thrips Populations

  • 정인홍 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 박부용 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 박세근 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 이상범 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 전성욱 (농촌진흥청 국립농업과학원 작물보호과)
  • Jeong, In-Hong (Division of Crop Protection, National Institute of Agricultural Science, RDA) ;
  • Park, Bueyong (Division of Crop Protection, National Institute of Agricultural Science, RDA) ;
  • Park, Se-Keun (Division of Crop Protection, National Institute of Agricultural Science, RDA) ;
  • Lee, Sang-Bum (Division of Crop Protection, National Institute of Agricultural Science, RDA) ;
  • Jeon, Sung-Wook (Division of Crop Protection, National Institute of Agricultural Science, RDA)
  • Received : 2018.10.11
  • Accepted : 2018.11.21
  • Published : 2018.12.31

Abstract

국내 시설 오이재배지에서 총채벌레류 방제를 위해 황색끈끈이트랩을 이용한 밀도 조사 및 생물검정을 통해 효율적 약제를 선발하였다. 총채벌레류 밀도 조사는 천안시 병천면 오이 시설재배지에서 2018년 4월 01일부터 8월 14일까지 약 3개월간 실시하였고, 그 결과 오이에 발생하는 총채벌레류는 꽃노랑총채벌레 (Frankliniella occidentalis), 대만총채벌레(F. intonsa), 오이총채벌레(Thrips palmi), 파총채벌레(T. tabaci), 볼록총채벌레 (Scirtothrips dorsalis), 좀머리총채벌레(Microcephalothrips abdominalis), 미나리총채벌레(T. nigropilosus) 등 총 7종이었고, 가장 많은 발생량을 보인 종은 꽃노랑총채벌레로 나타났다. 꽃노랑총채벌레의 약제저항성 발달을 알아보기 위해 10종 약제에 대하여 판별농도 (discriminating concentration; DC), 추천농도 (recommended concentration; RC), 배량농도 ($2{\times}$recommended concentration; $2{\times}RC$)를 설정하고 엽침지법을 이용하여 지역계통별 생물검정을 실시하였다. 생물검정 결과 emamectin benzoate EC (RC, $10.8{\mu}L\;L^{-1}$), chlorfenapyr EC (RC, $50.0{\mu}L\;L^{-1}$), spinetoram SC (RC, $25.0mg\;L^{-1}$), spinosad SC (RC, $50.0mg\;L^{-1}$)는 추천농도에서 90% 이상의 살충활성을 보였으나, cyantraniliprole EC(RC, $50.0{\mu}L\;L^{-1}$)과 neonicotinoid계통 4종 약제는 추천농도에서 모든 지역계통의 살충활성이 80% 미만이었고, cyantraniliprole EC는 배량농도에서 95% 이상의 살충활성을 보인 반면 neonicotinoid계통은 배량농도에서 다양한 살충활성을 보였다.

The purpose of this study was to investigate the density of thrips, and insecticidal resistance for effective control of Western flower thrips in greenhouse. The presence and density of the thrips was investigated using yellow colored-sticky trap in a cucumber field from May to August in Cheon-an. The results of the investigation revealed the existence of the following thrips species; Frankliniella occidentalis, F. intonsa, Thrips palmi, T. tabaci, Scirtothrips dorsalis, Microcephalothrips abdominalis, and T. nigropilosus. The predominant pest was found to be the western flower thrips. To survey the western flower thrips insecticidal resistance, we established the discriminating concentration (DC), recommended concentration (RC) and $2{\times}$recommended concentration ($2{\times}RC$) of nine insecticides; Emamectin benzoate EC, spinetoram SC, Chlorfenapyr EC, Spinosad SC, Cyantraniliprole EC, Acetamiprid WP, Dinotefuran WG, thiacloprid SC and thiamethoxam SC. The bioassay of about five local populations was conducted using the leaf-dipping method. In all local populations, insecticidal resistance in western flower thrips had not developed in emamectin benzoate EC (RC, $10.8{\mu}L\;L^{-1}$), chlorfenapyr EC (RC, $50.0{\mu}L\;L^{-1}$), spinetoram SC (RC, $25.0mg\;L^{-1}$), and spinosad SC (RC, $50.0mg\;L^{-1}$). However, insecticidal resistance in RC was found to have developed in cyantraniliprole EC (RC, $50.0{\mu}L\;L^{-1}$) and four insecticides of neonicotinoid type. Insecticidal activity of 95% or more was observed in each population when cyantraniliprole EC tested in $2{\times}RC$. However, the neonicotinoid types showed different insecticidal activity in $2{\times}RC$.

Keywords

References

  1. Ananthakrishnan TN. 1993. Bionomics of thrips. Ann. Rev. Entomol. 38:71-92.
  2. Bass C, I Denholm, MS Williamson and R Nauen. 2015. The global status of insect resistance to neonicotinoid insecticides. Pest. Biochem. Physiol. 121:78-87.
  3. Boonham N, P Smith, K Walsh, K Tame, J Morris, N Spence, J Bennison and I Barker. 2002. The detection of tomato spotted wilt virus (TSWV) in individual thrips using realtime fluorescent RT-PCR (TaMan). J. Virol. Methods 101:37-48.
  4. Cho JR, YJ Kim, YJ Ahn, JG You and JW Lee. 1998. Monitoring of acaricide resistance of two-spotted mite, Teranychus urticae Koch in wild type. Korean J. Appl. Entomol. 34:40-45.
  5. Cho MR, HY Jeon and SY Na. 2000. Occurrence of Frankliniella occidentalis and Tetranychus urticae in rose greenhouse and effectiveness of different control methods. J. Bio-Enviro. Control 9:179-184.
  6. Choi BY, SW Lee, HM Park, JK Yoo, SG Kim and CH Baik. 2005. Monitoring on insecticide resistance of major insect pests in plastic house. Korean J. Pestic. Sci. 4:380-390.
  7. Chung BK, SW Kang and JH Kwon. 2000. Chemical control system of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse eggplant. J. Asia Pac. Entomol. 3:1-9.
  8. Demirozer O, K Tyler-julian, J Funderburk, N Leppla and S Reitz. 2012. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Manag. Sci. 68:1537-1545.
  9. Denoyes B and D Bordat. 1986. A new pest of vegetable crops in Martinique: Thrips palmi (Karny). Agro. Trop. 41:167-169.
  10. Helyer NL and PJ Brobyn. 1992. Chemical control of western flower thrips (Frankliniella occidentalis Pergande). Ann. Appl. Biol. 121:219-231.
  11. Huseth AS, TM Chappell, K Langdon, SC Morsello, S Martin, JK Greene, A Herbert, AL Jacobson, FP Reay-Jones, T Reed, DD Reisig, PM Roberts, R Smith and GG Kennedy. 2016. Frankliniella fusca resistance to neonicotinoid insecticides: an emerging challenge for cotton pest management in the eastern United States. Pest Manag. Sci. 72:1934-1945. https://doi.org/10.1002/ps.4232
  12. Immaraju JA. TD Paine, JA Bethke, KL Robb and JP Newman. 1992. Western flower thrips (Thysanoptera: Thripidaae) resistance to insecticides in coastal California greenhouse. J. Econ. Entomol. 85:9-14.
  13. Jeon SW, BY Park, SK Park, SG Lee, HJ Ryu, SB Lee and IH Jeong. 2017. Establishment of discriminating concentration based assessment for insecticide resistance monitoring of palm thrips. Korean J. Environ. Biol. 35:557-567.
  14. Kim DH, MR Choi, CY Yang, TJ Kang, HH Kim and SW Jeon. 2014. Occurrence and damage by Thrips on greenhouse-cultivated Fig. Korean J. Appl. Entomol. 53:485-490.
  15. Lee GS, JH Lee, SH Kang and KS Woo. 2001. Thrips species (Thysanoptera: Thripidae) in winter season and their vernal activities on Jeju island, Koera. J. Asia Pac. Entomol. 4:115-122.
  16. Lee YS, HA Lee, HJ Lee, SS Hong, CS Kang, YS Choi and HH Kim. 2017. Insecticide susceptibility of western flower thrip, Frankliniella occidentalis (Thysanoptera: Thripidae) on horticultural crops in Gyeonggi area. Korean J. Appl. Entomol. 56:179-186.
  17. Lee YS, JY Kim, SS Hong, J Park and HH Park. 2012. Occurrence of sweet potato whitefly, Bemisia tabaci (Hemiptera; Aleyrdodidae) and its response to insecticide in Gyeonggi area. Korean J. Appl. Entomol. 51:377-382.
  18. Li DG, XY Shang, R Stuart, N Ralf, ZR Lei and SH Lee. 2016. Field resistance to sponosad in western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). J. Integr. Agric. 15:2803-2808.
  19. Morishita M. 1993. Toxicity and synergism of some insecticides against larvae of Thrips palmi Karny (Thysanoptera: Thripidae). Jpn. J. Appl. Entomol. Zool. 37:153-157.
  20. Paramasivam M and C Selvi. 2017. Laboratory bioassay methods to assess the insecticide toxicity against insect pests-A review. J. Entomol. Zool. Stud. 5:1441-1445.
  21. Park HH, JH Lee and KB Uhm. 2007. Economic thresholds western flower thrips (Thysanoptera: Thridae) for unripe red pepper in greenhouse. J. Asia Pac. Entomol. 10:45-53.
  22. Pelikan J. 1998. Thrips palmi (Thysanoptera) threatens European glasshouse crops. Plant protection-UZPI 34:39-42.
  23. Rosenheim JA, SC Welter, W Johnson, RFL Mau and LR Gusukuma-Minuto. 1990. Direct feeding damage on cucumber by mixed-species infestation of Thrips palmi and Frankliniella occidentalis (Thysanoptera, Tripidae). J. Econ. Entomol. 83:1519-1525. https://doi.org/10.1093/jee/83.4.1519
  24. Roush RT and GL Miller. 1986. Considerations for design of insecticide resistance monitoring programs. J. Econ. Entomol. 79:293-298.
  25. Stanley BH. 2014. Monitoring resistance. pp. 485-513. In Insect Reistance Management (Ostard DW ed.). Academic Press. Amsterdam.
  26. Wang Y, J Chen, YC Zhu, C Ma, Y Huang and J Shen. 2008. Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Pest Manag. Sci. 64:1278-1284.
  27. Woo KS. 1972. Studies on the thrips (Thysanoptera) unrecorded in Korea. Korean J. Appl. Entomol. 11:45-54.
  28. Woo KS, SB Ahn, SH Lee and HW Kwon. 1994. First record of the western flower thrips, Frankliniella occidentalis (Pergande), in Korea. Proceedings of the Autumn meeting of the Korean Soc. Appl. Entomol. p. 127.
  29. You JS, JI Kim and KH Kim. 2002. Monitoring of insecticidal sensitivity collected western flower thrips, Frankliniella occidentalis (Thysanoptera, Thripidae) in rose agriculture. Korean J. Pestic. Sci. 4:380-390.
  30. Yu JS, JI Kim and GH Kim. 2002. Insecticide susceptibilities of rose field-collected population of western flower thrips, Frankliniella occidentalis in Korea. Korean J. Pestic. Sci. 6:80-86.