DOI QR코드

DOI QR Code

The Assessment of Photochemical Index of Nursery Seedlings of Cucumber and Tomato under Drought Stress

건조스트레스에 의한 오이와 토마토 공정육묘의 광화학적 지표 해석

  • Ham, Hyun Don (Institute of Ecological Phytochemistry and Department of Plant Life and Environmental Science, Hankyong National University) ;
  • Kim, Tae Seong (Institute of Ecological Phytochemistry and Department of Plant Life and Environmental Science, Hankyong National University) ;
  • Lee, Mi Hyun (Institute of Ecological Phytochemistry and Department of Plant Life and Environmental Science, Hankyong National University) ;
  • Park, Ki Bae (Institute of Ecological Phytochemistry and Department of Plant Life and Environmental Science, Hankyong National University) ;
  • An, Jae-Ho (Department of Civil, Safety & Environmental Engineering, Hankyong National University) ;
  • Kang, Dong Hyeon (Department of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Kim, Tae Wan (Institute of Ecological Phytochemistry and Department of Plant Life and Environmental Science, Hankyong National University)
  • 함현돈 (국립한경대학교 식물생명환경과학과 식물생태화학연구소) ;
  • 김태성 (국립한경대학교 식물생명환경과학과 식물생태화학연구소) ;
  • 이미현 (국립한경대학교 식물생명환경과학과 식물생태화학연구소) ;
  • 박기배 (국립한경대학교 식물생명환경과학과 식물생태화학연구소) ;
  • 안재호 (국립한경대학교 토목안전환경공학과) ;
  • 강동현 (국립농업과학원 농업공학부) ;
  • 김태완 (국립한경대학교 식물생명환경과학과 식물생태화학연구소)
  • Received : 2018.10.22
  • Accepted : 2018.11.08
  • Published : 2018.12.31

Abstract

The purpose of this study is to analyze photochemical activity of nursery seedlings under drought stress, using chlorophyll fluorescence reaction analysis. Young nursery seedlings of tomato (Lycopersicon esculentum Mill.) and cucumber (Cucumis sativa L.), were grown under drought stress for 8 days. Analysis of chlorophyll fluorescence reaction (OJIP) and parameters, were performed to evaluate photochemical fluctuation in nursery seedlings under drought stress. Chlorophyll fluorescence reaction analysis showed maximal recorded fluorescence (P) decreased from the 5 day after treatment in tomato seedlings, while an amount of chlorophyll fluorescence increased at the J-I step. Thus, physiological activity was reduced. In cucumber seedlings, maximal recorded fluorescence (P) and maximal variable fluorescence ($F_V$) lowered from the 4 day after treatment, and chlorophyll fluorescence intensity of J-I step increased. Chlorophyll fluorescence parameter analysis showed electron transfer efficiency of PSII and PSI were significantly inhibited with decreasing $ET2_O/RC$ and $RE1_O/RC$ from the 5 day after treatment, in tomato seedlings and from the 4 day after treatment, in cucumber seedlings. $ET2_O/RC$ and $PI_{ABS}$ significantly changed. In conclusion, 6 indices such as $F_V/F_M$, $DI_O/RC$, $ET2_O/RC$, $RE1_O/RC$, $PI_{ABS}$ and $PI_{TOTAL}ABS$ were selected for determining drought stress in nursery seedlings. Drought stress factor index (DFI) was used to evaluate whether the crop was healthy or not, under drought stress. Cucumber seedlings were less resistant to drought stress than tomato seedlings, in the process of drought stress.

본 연구는 엽록소형광반응 분석을 이용하여 건조스트레스에 의한 공정육묘의 광화학적 활력을 분석하였다. 토마토와 오이 공정육묘를 8일 동안 건조스트레스 처리를 하였다. 엽록소형광반응(OJIP)과 매개변수 분석을 통해 건조스트레스로 인한 작물의 광화학적 변동을 평가하였다. 엽록소 형광반응(OJIP) 분석 결과, 토마토는 처리 후 5일부터 최대 형광량(P)이 감소한 반면 J-I 단계에서는 엽록소 형광량이 증가하였다. 따라서 생리적 활력이 감소한 것을 알 수 있었다. 오이의 경우 처리 후 4일부터 최대 형광(P) 및 변동 형광량($F_V$)이 낮아지고 J-I 단계의 엽록소 형광 수치가 증가하였다. 엽록소 형광 매개변수 분석한 결과 토마토는 처리 후 5일부터 특히 $ET2_O/RC$$RE1_O/RC$가 감소하면서 광계II와 광계I의 전자전달효율이 유의적으로 낮아진 것으로 보인 반면 오이는 처리 후 4일부터 $ET2_O/RC$$PI_{ABS}$가 상당히 변화하였다. 결론적으로 $F_V/F_M$, $DI_O/RC$, $ET2_O/RC$, $RE1_O/RC$, $PI_{ABS}$, $PI_{TOTAL}ABS$ 6개의 지표가 공정육묘의 건조스트레스를 판단하는 지표로 선정되었다. 건조스트레스지수(DFI)를 통해 건조스트레스로 인한 작물별 건전성 평가를 하였고 오이의 경우 토마토에 비해 건조 저항성이 낮은 것으로 판단되었다.

Keywords

References

  1. Baker NR and E Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. https://doi.org/10.1093/jxb/erh196
  2. Bandaru V, CS Daughtry, EE Codling, DJ Hansen, S White-Hansen and CE Green. 2016. Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination. Int. J. Environ. Res. Public Health 13:606.
  3. Bjorkman O and B Demmig. 1987. Photon yield of $O_2$ evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504.
  4. Burke JJ. 2007. Evaluation of source leaf responses to waterdeficit stresses in cotton using a novel stress bioassay. Plant Physiol. 143:108-121.
  5. Butler W and M Kitajima. 1975. Fluorescence quenching in photosystem II of chloroplasts. Biochim. Biophys. Acta-Bioenerg. 376:116-125.
  6. Calatayud A, D Roca and PF Martinez. 2006. Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol. Biochem. 44:564-573.
  7. Falqueto AR, RA da Silva Junior, MTG Gomes, JPR Martins, DM Silva and FL Partelli. 2017. Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Sci. Hortic. 224:238-243.
  8. Fghire R, F Anaya, OI Ali, O Benlhabib, R Ragab and S Wahbi. 2015. Physiological and photosynthetic response of quinoa to drought stress. Chil. J. Agr. Res. 75:174-183. https://doi.org/10.4067/S0718-58392015000200006
  9. Fracheboud Y and J Leipner. 2003. The application of chlorophyll fluorescence to study light, temperature, and drought stress. pp. 125-150. In Practical applications of chlorophyll fluorescence in plant biology, Springer, Boston, MA.
  10. Genty B, JM Briantais and NR Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta-Gen. Subj. 990:87-92.
  11. Govindjee G. 1995. Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust. J. Plant Physiol. 22:131-160.
  12. Govindjee G. 2004. Chlorophyll a fluorescence: a bit of basics and history. pp. 1-42. In Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, Netherlands.
  13. Jefferies R. 1994. Drought and chlorophyll fluorescence in fieldgrown potato (Solanum tuberosum). Physiol. Plant. 90:93-97.
  14. Kautsky H and A Hirsch. 1931. Neue versuche zur kohlensaureassimilation. Naturwissenschaften 19:964.
  15. Kim MI, WK Lee, TH Kwon, DA Kwak, YS Kim and SH Lee. 2011. Early detecting damaged trees by pine wilt disease using DI (Detection Index) from portable near infrared camera. J. Korean For. Soc. 100:374-381.
  16. Lichtenthaler HK, G Langsdorf, S Lenk and C Buschmann. 2005. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43:355-369. https://doi.org/10.1007/s11099-005-0060-8
  17. Massacci A, SM Nabiev, L Pietrosanti, SK Nematov, TN Chernikova, K Thor and J Leipner. 2008. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol. Biochem. 46:189-195.
  18. Okcu G, MD Kaya and M Atak. 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk. J. Agric. For. 29:237-242.
  19. Okunlola GO, AA Adelusi, ED Olowolaju, OM Oseni and GL Akingboye. 2015. Effect of water stress on the growth and some yield parameters of Solanum lycopersicum L. Int. J. Biol. Chem. Sci. 9:1755-1761.
  20. Oukarroum A, S El Madidi, G Schansker and RJ Strasser. 2007. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 60:438-446.
  21. Oukarroum A, G Schansker and RJ Strasser. 2009. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol. Plant. 137:188-199.
  22. Paillotin G. 1976. Movement of excitations in the photosynthetic domains of photosystem II. J. Theor. Biol. 58:237-252.
  23. Park KH, HT Park and HS Han. 2011. A study on the current state and development strategies of raising seedling industry. Korea Rural Economic Institute.
  24. Park SH, SY Yoo, MJ Lee, JY Park, KT Song, TW Kim and BM Lee. 2015. Photochemical response analysis on different seeding date and nitrogen (N) level for maize (Zea mays L.). Korean J. Crop Sci. 60:1-7.
  25. RDA. 2015. Progress plant for korean smart-farm based on ICT convergence. pp. 1-51. Rural Development of Administration.
  26. Schuerger AC, GA Capelle, JA Di Benedetto, C Mao, CN Thai, MD Evans, JT Richards, TA Blank and EC Stryjewski. 2003. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sens. Environ. 84: 572-588.
  27. Son MH, WK Lee, SH Lee, HK Cho and JH Lee. 2006. Natural spread pattern of damaged area by pine wilt disease using geostatistical analysis. J. Korean For. Soc. 95: 240-249.
  28. Stirbet A and G Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B-Biol. 104:236-257.
  29. Strasser RJ. 1985. Dissipative Strukturen als thermodynamischer Regelkreis des Photosyntheseapparates. Ber. Dtsch. Bot. Ges. 98:53-72.
  30. Strasser RJ, M Tsimilli-Michael, D Dangre and M Rai. 2007. Biophysical phenomics reveals functional building blocks of plants systems biology: a case study for the evaluation of the impact of mycorrhization with Piriformospora indica. pp. 319-341. In Advanced techniques in soil microbiology. Springer, Berlin, Heidelberg.
  31. Thach W. 2007. On the mechanism of cerebellar contributions to cognition. Cerebellum 6:163-167.
  32. Van Rensburg L, GHJ Kruger, P Eggenberg and RJ Strasser. 1996. Can screening criteria for drought resistance in Nicotiana tabacum L. be derived from the polyphasic rise of the chlorophyll a fluorescence transient (OJIP)? S. Afr. J. Bot. 62:337-341.
  33. Yoo SY, KC Eom, SH Park and TW Kim. 2012. Possibility of drought stress indexing by chlorophyll fluorescence imaging technique in red pepper (Capsicum annuum L.). Korean J. Soil. Sci. Fertil. 45:676-682.
  34. Yoo SY, YH Lee, SH Park, KM Choi, JY Park, AR Kim, SM Hwang, MJ Lee, TS Ko and TW Kim. 2013. Photochemical response analysis on drought stress for red pepper (Capsium annuum L.). Korean J. Soil. Sci. Fertil. 46:659-664.
  35. Yeo UH, IB Lee, KS Kwon, TW Ha, SJ Park, RW Kim and SY Lee. 2016. Analysis of research trend and core technologies based on ICT to materialize smart-farm. Protected Hort. Plant Fac. 25:30-41.
  36. Zivcak M, M Brestic, K Olsovska and P Slamka. 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L. L. Plant Soil Environ. 54:133-139.