DOI QR코드

DOI QR Code

Ameliorative effects of Moringa on cuprizone-induced memory decline in rat model of multiple sclerosis

  • Omotoso, Gabriel Olaiya (Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin) ;
  • Gbadamosi, Ismail Temitayo (Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin) ;
  • Afolabi, Theresa Titilayo (Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin) ;
  • Abdulwahab, Ahmad Bolakale (Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin) ;
  • Akinlolu, Adelaja Abdulazeez (Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin)
  • Received : 2017.12.09
  • Accepted : 2018.03.05
  • Published : 2018.06.30

Abstract

Cuprizone is a neurotoxin with copper-chelating ability used in animal model of multiple sclerosis in which oxidative stress has been documented as one of the cascade in the pathogenesis. Moringa oleifera is a phytomedicinal plant with antioxidant and neuroprotective properties. This study aimed at evaluating the ameliorative capability of M. oleifera in cuprizone-induced behavioral and histopathological alterations in the prefrontal cortex and hippocampus of Wistar rats. Four groups of rats were treated with normal saline, cuprizone, M. oleifera and a combination of M. oleifera and cuprizone, for five weeks. The rats were subjected to Morris water maze and Y-maze to assess long and short-term memory respectively. The animals were sacrificed, and brain tissues were removed for histochemical and enzyme lysate immunosorbent assay for catalase, superoxide dismutase, and nitric oxide. Cuprizone significantly induced oxidative and nitrosative stress coupled with memory decline and cortico-hippocampal neuronal deficits; however, administration of M. oleifera significantly reversed the neuropathological deficits induced by cuprizone.

Keywords

References

  1. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47:707-17. https://doi.org/10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
  2. Geurts JJ, Barkhof F. Grey matter pathology in multiple sclerosis. Lancet Neurol 2008;7:841-51. https://doi.org/10.1016/S1474-4422(08)70191-1
  3. Norkute A, Hieble A, Braun A, Johann S, Clarner T, Baumgartner W, Beyer C, Kipp M. Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res 2009;87:1343-55. https://doi.org/10.1002/jnr.21946
  4. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2014;47:485-505. https://doi.org/10.1016/j.neubiorev.2014.10.004
  5. Manto M. Abnormal copper homeostasis: mechanisms and roles in neurodegeneration. Toxics 2014;2:327-45. https://doi.org/10.3390/toxics2020327
  6. Skripuletz T, Bussmann JH, Gudi V, Koutsoudaki PN, Pul R, Moharregh-Khiabani D, Lindner M, Stangel M. Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathol 2010;20:301-12. https://doi.org/10.1111/j.1750-3639.2009.00271.x
  7. Skripuletz T, Lindner M, Kotsiari A, Garde N, Fokuhl J, Linsmeier F, Trebst C, Stangel M. Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 2008;172:1053-61. https://doi.org/10.2353/ajpath.2008.070850
  8. Draheim T, Liessem A, Scheld M, Wilms F, Weissflog M, Denecke B, Kensler TW, Zendedel A, Beyer C, Kipp M, Wruck CJ, Fragoulis A, Clarner T. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia 2016;64:2219-30. https://doi.org/10.1002/glia.23058
  9. Suneetha A, Raja Rajeswari K. Role of dimethyl fumarate in oxidative stress of multiple sclerosis: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1019:15-20. https://doi.org/10.1016/j.jchromb.2016.02.010
  10. Sajjadian M, Kashani IR, Pasbakhsh P, Hassani M, Omidi A, Takzare N, Clarner T, Beyer C, Zendedel A. Protective effects of cannabidiol on cuprizone-induced demyelination in C57BL/6 mice. J Contemp Med Sci 2017;3:278-83. https://doi.org/10.22317/jcms.09201707
  11. Carvalho AN, Lim JL, Nijland PG, Witte ME, Van Horssen J. Glutathione in multiple sclerosis: more than just an antioxidant? Mult Scler 2014;20:1425-31. https://doi.org/10.1177/1352458514533400
  12. World Health Organization. Traditional medicine strategy 2002-2005. Geneva: World Health Organization; 2002.
  13. Eilert U, Wolters B, Nahrstedt A. The antibiotic principle of seeds of Moringa oleifera and Moringa stenopetala. Planta Med 1981;42:55-61. https://doi.org/10.1055/s-2007-971546
  14. Ezeamuzie IC, Ambakederemo AW, Shode FO, Ekwebelem SC. Antiinflammatory effects of Moringa oleifera root extract. Int J Pharmacogn 1996;34:207-12. https://doi.org/10.1076/phbi.34.3.207.13211
  15. Gbadamosi IT, Omotoso GO, Olajide OJ, Dada-Habeeb SO, Arogundade TT, Lambe E, Obasi KK. Moringa protects against nicotine-induced morphological and oxidative damage in the frontal cortex of Wistar rats. Anatomy 2016;10:170-6. https://doi.org/10.2399/ana.16.020
  16. Sreelatha S, Jeyachitra A, Padma PR. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem Toxicol 2011;49:1270-5. https://doi.org/10.1016/j.fct.2011.03.006
  17. Ferreira RS, Napoleao TH, Santos AF, Sa RA, Carneiro-da-Cunha MG, Morais MM, Silva-Lucca RA, Oliva ML, Coelho LC, Paiva PM. Coagulant and antibacterial activities of the watersoluble seed lectin from Moringa oleifera. Lett Appl Microbiol 2011;53:186-92. https://doi.org/10.1111/j.1472-765X.2011.03089.x
  18. Libro R, Giacoppo S, Soundara Rajan T, Bramanti P, Mazzon E. Natural phytochemicals in the treatment and prevention of dementia: an overview. Molecules 2016;21:518. https://doi.org/10.3390/molecules21040518
  19. Kasolo JN, Bimenya GS, Ojok L, Ochieng J, Ogwal-okeng JW. Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J Med Plants Res 2010;4:753-7.
  20. Pari L, KaramacM, Kosinska A, Rybarczyk A, Amarowicz R. Antioxidant activity of the crude extracts of drumstick tree (Moringa oleifera Lam.) and sweet broomweed (Scoparia dulcis L.) leaves. Pol J Food Nutr Sci 2007;57:203-8.
  21. Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta 1995;235:207-19. https://doi.org/10.1016/0009-8981(95)06045-1
  22. Kawada N, Seki S, Inoue M, Kuroki T. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology 1998;27:1265-74. https://doi.org/10.1002/hep.510270512
  23. Romanova D, Vachalkova A, Cipak L, Ovesna Z, Rauko P. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma 2001;48:104-7.
  24. El-Hawary SS, El-Sofany RH, Abdel-Monem AR, Ashour RS, Sleem AA. Polyphenolics content and biological activity of Plectranthus amboinicus (Lour.) spreng growing in Egypt (Lamiaceae). Pharmacogn J 2012;2:45-54.
  25. Ganguly R, Hazra R, Ray K, Guha D. Effect of Moringa oleifera in experimental model of Alzheimer's disease: role of antioxidants. Ann Neurosci 2005;12:33-6. https://doi.org/10.5214/ans.0972.7531.2005.120301
  26. Lassmann H. What drives disease in multiple sclerosis: inflammation or neurodegeneration? Clin Exp Neuroimmunol 2010;1: 2-11. https://doi.org/10.1111/j.1759-1961.2009.00003.x
  27. Lassmann H. Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 2013;333:1-4. https://doi.org/10.1016/j.jns.2013.05.010
  28. Keynes RG, Garthwaite J. Nitric oxide and its role in ischaemic brain injury. Curr Mol Med 2004;4:179-91. https://doi.org/10.2174/1566524043479176
  29. Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ. Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 2000;157:1439-45. https://doi.org/10.1016/S0002-9440(10)64781-5
  30. Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, Berente Z, Komoly S, Beyer C. 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 2009;57:807-14. https://doi.org/10.1002/glia.20806
  31. Kashani IR, Rajabi Z, Akbari M, Hassanzadeh G, Mohseni A, Eramsadati MK, Rafiee K, Beyer C, Kipp M, Zendedel A. Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res 2014;232:2835-46. https://doi.org/10.1007/s00221-014-3946-5
  32. Abe H, Saito F, Tanaka T, Mizukami S, Hasegawa-Baba Y, Imatanaka N, Akahori Y, Yoshida T, Shibutani M. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats. Toxicol Appl Pharmacol 2016;290:10-20. https://doi.org/10.1016/j.taap.2015.11.006
  33. Nathoo N, Yong VW, Dunn JF. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. Neuroimage Clin 2014;4:743-56. https://doi.org/10.1016/j.nicl.2014.04.011
  34. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiol Rev 2011;91:555-602. https://doi.org/10.1152/physrev.00048.2009

Cited by

  1. Animal Weight Is an Important Variable for Reliable Cuprizone-Induced Demyelination vol.68, pp.4, 2018, https://doi.org/10.1007/s12031-019-01312-0
  2. Cognitive-Enhancing, Ex Vivo Antilipid Peroxidation and Qualitative Phytochemical Evaluation of the Aqueous and Methanolic Stem Bark Extracts of Lonchocarpus eriocalyx (Harms.) vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8819045
  3. Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model vol.35, pp.2, 2018, https://doi.org/10.1007/s11011-019-00488-z
  4. Neuroprotective Effects of Melatonin during Demyelination and Remyelination Stages in a Mouse Model of Multiple Sclerosis vol.70, pp.3, 2018, https://doi.org/10.1007/s12031-019-01425-6
  5. Signal Transducer and Activator of Transcription 3 Activation in Hippocampal Neural Stem Cells and Cognitive Deficits in Mice Following Short-term Cuprizone Exposure vol.472, pp.None, 2018, https://doi.org/10.1016/j.neuroscience.2021.07.031
  6. Moringa oleifera-supplemented diet protect against cortico-hippocampal neuronal degeneration in scopolamine-induced spatial memory deficit in mice: role of oxido-inflammatory and cholinergic neurotran vol.36, pp.8, 2018, https://doi.org/10.1007/s11011-021-00855-9
  7. Nucleosides rich extract from Cordyceps cicadae alleviated cisplatin-induced neurotoxicity in rats: A behavioral, biochemical and histopathological study vol.15, pp.1, 2022, https://doi.org/10.1016/j.arabjc.2021.103476