DOI QR코드

DOI QR Code

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle

승용차용 터보과급기의 저널 베어링 마찰 손실 측정

  • Chung, in-Eun (Dept. of Mechanical Engineering, Korea Univ. of Technology and Education) ;
  • Jeon, Se-Hun (Dept. of Mechanical Engineering, Graduate School, Korea Univ. of Technology and Education)
  • 정진은 (한국기술교육대학교 기계공학부) ;
  • 전세훈 (한국기술교육대학교 대학원 기계공학과)
  • Received : 2018.04.24
  • Accepted : 2018.07.06
  • Published : 2018.07.31

Abstract

The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

본 연구에서는 터보과급기의 성능을 저해하는 주요 인자 중 하나인 마찰손실에 대한 연구를 수행하였다. 실제 엔진에서 빈번하게 사용되는 저속 구간에서의 승용차용 터보과급기의 마찰손실 측정 장치를 개발하고, 저속 영역에서 작동하는 터보과급기의 마찰손실을 측정하였다. 플로팅 타입의 승용차용 터보과급기 저널 베어링를 실험 대상으로 선정하였으며, 마찰손실 측정 장치는 구동 모터, 오일 공급 시스템, 마그네틱 커플링으로 구성하였다. 실제 차량의 저속 운전 상황을 모사할 수 있도록 설계, 제작되었고, 터보과급기 회전속도, 오일 온도 및 압력을 실험 변수로 선정하였다. 또한, 마찰손실 측정 장치는 로드 셀을 사용하여 발생하는 마찰 토크를 직접 측정하여 마찰손실을 산출하였으며, 커플링을 통해 구동 모터의 동력을 터보과급기 축에 전달하고, 오일 온도 및 압력을 조절하였다. 오일 압력 3bar와 4bar로 오일을 공급하는 상태에서 오일 온도를 $50^{\circ}C$에서 $100^{\circ}C$까지 $10^{\circ}C$ 간격으로 변화시키면서 터보과급기를 회전수 30,000~90,000rpm으로 작동시켰다. 터보과급기 회전속도 증가할 때 마찰손실은 증가하였으며, 과급기 회전속도의 1.6 승에 비례함을 보였다. 오일 온도가 증가함에 따라 마찰손실은 감소하였으며, 오일 압력이 증가함에 따라 마찰손실은 증가하였다. 따라서 적절한 오일 온도와 압력을 유지하는 것이 필요하다.

Keywords

References

  1. Namho Kim, Jaewoo Chung, Jungho Kang, Jubong Seo, Suyoung Kang, "Development of turbocharger performance test method using the turbocharger model", Conference of KSAE, pp. 274-282, 11, 2011.
  2. E.G. Giakoumis, A.M. Dimaratos, C.D. Rakopoulos, "Experimental study of combustion noise radiation during transient turbocharged diesel engine operation", Energy, pp. 4983-4995, 2011. DOI: https://doi.org/10.1016/j.energy.2011.05.043
  3. Norbert A. Schorn, "The Radial Turbine for Small Turbocharger Application: Evolution and Analytical Methods for Twin-Entry Turbine Turbochargers," SAE 2014 World Congress, 2014-01-1647, 2014. DOI: https://doi.org/10.4271/2014-01-1647
  4. Deligant M, Podevin P, Lamquin T, Vidal F, Marchal A, "Experimental study of turbocharger's performances at low speeds", In: Proceedings of the ASME 2010 Internal Combustion Engine Division Fall Technical Conference, pp. 1-8, 2010. DOI: https://doi.org/10.1115/ICEF2010-35071
  5. M. Deligant, P. Podevin, and G. Descombes, "Computational Fluid Dynamics Calculation of Turbocharger's Bearing Losses,", SAE Int. J. Engines, vol. 3, Issue 2, pp. 103-114, 2010. DOI: https://doi.org/10.4271/2010-01-1537
  6. M. Deligant, P. Podevin, G. Descombes, "Experimental identification of turbocharger mechanical friction lossess", Energy, vol. 39, Issue 1, pp. 388-394, 2012. DOI: https://doi.org/10.1016/j.energy.2011.12.049
  7. Yuji Iwakiri, Tsuyoshi Uesugi, "Measurement and Analysis of Turbocharger Bearing Losses", JSAE Annual Congress, 282-20135886, 2013.
  8. R. Vanhaelst, A. Kheir, and J. Czajka, " A systematic analysis of the friction losses on bearing of modern turbocharger," Combustion Engine, 164(1), pp. 22-31, 2016.
  9. S. Marelli, S. Gandolfi, and M. Capobianco, "Experimental and Numerical Analysis of Mechanical Friction Losses in Automotive Turbochargers," SAE Technical Paper 2016-01-1026, 2016. DOI: https://doi.org/10.4271/2016-01-1026
  10. Otobe T, "Method of performance measurement for low turbocharger speeds", In: 15th Supercharging Conference, Dresden Germany, pp. 409-19, 2010.
  11. Scharf J, Schorn N, Smiljanowski V, Uhlmann T, Aymanns R, "Method for extended turbocharger mapping and turbocharger assessment", In: 15th Supercharging Conference. Dresden, Germany.
  12. Deligant M, Podevin P, Lamquin T, Vidal F, Marchal A, "Experimental study of turbocharger's performances at low speeds", In: Proceedings of the ASME 2010 Internal Combustion Engine Division Fall Technical Conference, pp. 1-8, 2010. DOI: https://doi.org/10.1115/ICEF2010-35071
  13. Erik Sjoeberg, Friction Characterization Turbocharger Bearings, Master of Science Thesis, KTH Industrial Engineering and Management, Stockholm, Sweden, 2013
  14. P. Podevin, A. Clenci, G. Descombes, "Influence of the lubricating oil pressure and temperature on the performance at low speeds of a centrifugal compressor for an automotive engine", Thermal Engineering, 31(2 -3), pp. 194-201, 2011. DOI: https://doi.org/10.1016/j.applthermaleng.2010.08.033
  15. Deligant M., Podevin P., Descombes G., "Experimental identification of turbocharger mechanical friction losses", Energy, vol.39, issue 1, pp 388-394, 2012. DOI: https://doi.org/10.1016/j.energy.2011.12.049
  16. Y. Iwakiri, T. Uesugi, " Measurement and Analysis of Turbocharger Bearing Losses," 2013 JSAE Annual Congress(Autumn), 20135886.
  17. J. Bennett, Friction in journal bearing, Durham thesis, Durham University, p. 17, 1981.
  18. Frederic P. Miller, Agnes F. Vandome, McBrewster John, Darcy-Weisbach Equation, VDM Publishing, 2010.