DOI QR코드

DOI QR Code

압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level

  • 투고 : 2017.11.24
  • 심사 : 2018.02.21
  • 발행 : 2018.05.01

초록

이 논문은 압축강도 수준(100, 140, 180 MPa급)에 따른 HPFRCC의 동적충격 인장강도를 평가하였다. 먼저 100, 140, 180 MPa급 HPFRCC의 압축응력-변형률 관계를 분석한 결과 압축강도는 각각 112, 150, 202 MPa로 나타났으며, 압축강도가 높아짐에 따라 탄성계수도 증가하는 경향을 나타내었다. 100, 140, 180 MPa급 HPFRCC의 정적 인장강도는 각각 10.7, 11.5, 16.5 MPa로 나타났으며, 압축강도가 높아질수록 인장강도도 증가하는 경향을 나타내었다. 반면 100 및 140 MPa급 HPFRCC에서의 인장강도 및 에너지 흡수능력은 압축강도 수준에 따라 큰 차이를 보이지 않았다. 이는 시험체의 규격 및 강섬유의 배열에 영향을 받은 것으로 판단된다. HPFRCC의 동적충격 인장강도를 평가한 결과, 변형률 속도가 10-1/s에서 150/s로 증가할수록 모든 HPFRCC의 인장강도와 동적증가계수는 증가하는 경향을 보였다. 한편 동일한 범위의 변형률 속도에서 HPFRCC의 압축강도가 낮을수록 인장강도에 대한 DIF가 높게 측정되어 효율적인 측면에서는 100 MPa급 HPFRCC가 가장 우수한 것으로 나타났다. 따라서 높은 수준의 인장성능이 요구되는 경우 높은 압축강도를 가지는 HPFRCC를 사용하는 것이 유리하며, 폭발과 같은 고속변형률 속도에서 보다 효율적인 접근을 위해서는 목표 압축강도에 근접한 HPFRCC를 사용하는 것이 바람직한 것으로 판단된다.

This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

키워드

참고문헌

  1. Aitcin, P. C. (2000), Cements of yesterday and today-Concrete of tomorrow. Cement and Concrete Research, 30, 1349-1359. https://doi.org/10.1016/S0008-8846(00)00365-3
  2. Kamen, A., Denarie, E., Sadouki H., and Brühwiler, E. (2009), UHPFRCC ARC tensile creep at early age, Materials and Structures, 42(1), 113-122. https://doi.org/10.1617/s11527-008-9371-0
  3. Kim, D. J., El-Tawil, S., and Naaman, A. E. (2009), Rate-dependent tensile behavior of high performance fiber reinforced cementitious composites, Materials and Structures, 42(3), 399-414. https://doi.org/10.1617/s11527-008-9390-x
  4. Kim, J. J., Park, G. J., Kim, D. J., Moon, J. H., and Lee, J. H. (2014), High-rate tensile behavior of steel fiber-reinforced concrete for nuclear power plants, Nuclear Engineering and Design, 266, 43-54. https://doi.org/10.1016/j.nucengdes.2013.10.017
  5. Kim, S.W., Kang, S.T., and Han, S.M. (2006), Characteristics and application of ultra high performance cementitious composite, Magazine of the Korea Concrete Institute, 18(1), 16-21. https://doi.org/10.22636/MKCI.2006.18.1.16
  6. Korea Institute of Civil Engineering and Building Technology. (2006), Development of technology to improve the durability of concrete bridges, Report No. KICT 2006-89.
  7. Park, J. K. (2016), Direct tensile behavior of high-performance hybridsteel-fiber-reinforced cementitous composites at high strain rates, M.S. dissertation, Sejong University, Department of civil & environmental engineering.
  8. Park, C. J., Han, M. C. (2015), Mechanical Properties and Autogenous Shrinkage of Ultra High Performance Concrete Using Expansive Admixture and Shringkage Reducing Agent depending on Curing Conditions, Korea Academy Industrial Cooperation Society, 16(11), 7910-7916. https://doi.org/10.5762/KAIS.2015.16.11.7910
  9. Park, S. H., Kim, D. J., and Kim, S. W. (2016), Investigating the impact resistance of ultra-high-performance fiber-reinforced concrete using an improved strain energy impact test machine, Construction and Building Materials, 125, 145-159. https://doi.org/10.1016/j.conbuildmat.2016.08.027
  10. Richard, P., and Cheyrezy, M.H. (1995), Composition of reactive powder concrete. Cement and Concrete research, 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  11. Tran N.T., Tran, T.K., Jeon, J.K., Park, J.K., Kim, D.J. (2016), Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates. Cement and Concrete Research, 79, 169-184 https://doi.org/10.1016/j.cemconres.2015.09.011