참고문헌
- Ahmad, S., Irons, B. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Method. Eng., 2(3), 419-451. https://doi.org/10.1002/nme.1620020310
- Alankaya, V. and Oktem, A.S. (2016), "Static analysis of laminated and sandwich composite doubly-curved shallow shells", Steel Compos. Struct., Int. J., 20(5), 1043-1066. https://doi.org/10.12989/scs.2016.20.5.1043
- Arciniega, R.A. and Reddy, J.N. (2007a), "Large deformation analysis of functionally graded shells", Int. J. Solids Struct., 44(6), 2036-2052. https://doi.org/10.1016/j.ijsolstr.2006.08.035
- Arciniega, R.A. and Reddy, J.N. (2007b), "Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures", Comput. Method. Appl. Mech. Eng., 196(4-6), 1048-1073. https://doi.org/10.1016/j.cma.2006.08.014
- Barbosa, J.A.T. and Ferreira, A.J.M. (2009), "Geometrically nonlinear analysis of functionally gaded plates and shells", Mech. Adv. Mater. Struct., 17(1), 40-48. https://doi.org/10.1080/15376490903082870
- Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Engiewood Cliffs.
- Beheshti, A. and Ramezani, S. (2015), "Nonlinear finite element analysis of functionally graded structures by enhanced assumed strain shell elements", Appl. Math. Model., 39(13), 3690-3703. https://doi.org/10.1016/j.apm.2014.11.064
- Caliri Jr., M.F., Ferreira, A.J.M. and Tita, V. (2016), "A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method", Compos. Struct., 156, 63-77. https://doi.org/10.1016/j.compstruct.2016.02.036
- Carrera, E., Cinefra, M., Li, G. and Kulikov, G.M. (2016), "MITC9 shell finite elements with miscellaneous through-thethickness functions for the analysis of laminated structures", Compos. Struct., 154, 360-373. https://doi.org/10.1016/j.compstruct.2016.07.032
- Chaudhuri, R.A. and Oktem, A.S. (2015), "Analysis of simply-supported saddle-shaped symmetric cross-ply panels with no surface-parallel boundary constraints", AIAA J., 54(2), 782-788.
- Chaudhuri, R.A., Oktem, A.S. and Guedes Soares, C. (2014), "Levy-type boundary Fourier analysis of thick clamped hyperbolic-paraboloidal cross-ply panels", AIAA J., 53(1), 140-149. https://doi.org/10.2514/1.J052986
- Chaudhuri, R.A., Oktem, A.S. and Guedes Soares, C. (2015), "Levy-type boundary Fourier analysis of thick cross-ply panels with negative Gaussian curvature", AIAA J., 53(9), 2492-2503. https://doi.org/10.2514/1.J053440
- Coda, H.B., Paccola, R.R. and Carrazedo, R. (2017), "Zig-Zag effect without degrees of freedom in linear and non linear analysis of laminated plates and shells", Compos. Struct., 161, 32-50. https://doi.org/10.1016/j.compstruct.2016.10.129
- Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general nonlinear analysis", Eng. Comput., 1(1), 77-88. https://doi.org/10.1108/eb023562
- Hughes, T.J.R. and Liu, W.K. (1981a), "Nonlinear finite element analysis of shells-part II. two-dimensional shells", Comput. Method. Appl. Mech. Eng., 27(2), 167-181. https://doi.org/10.1016/0045-7825(81)90148-1
- Hughes, T.J.R. and Liu, W.K. (1981b), "Nonlinear finite element analysis of shells: Part I. three-dimensional shells", Comput. Method. Appl. Mech. Eng., 26(3), 331-362. https://doi.org/10.1016/0045-7825(81)90121-3
- Jung, W.-Y., Han, S.-C., Lee, W.-H. and Park, W.-T. (2016), "Postbuckling analysis of laminated composite shells under shear loads", Steel Compos. Struct., Int. J., 21(2), 373-394. https://doi.org/10.12989/scs.2016.21.2.373
- Kaci, A., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2014), "Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness", Steel Compos. Struct., Int. J., 16(4), 339-356. https://doi.org/10.12989/scs.2014.16.4.339
- Kapania, R.K. (1989), "A Review on the Analysis of Laminated Shells", J. Press. Vessel Tech., 111(2), 88-96. https://doi.org/10.1115/1.3265662
- Khabbaz, R.S., Manshadi, B.D. and Abedian, A. (2009), "Nonlinear analysis of FGM plates under pressure loads using the higher-order shear deformation theories", Compos. Struct., 89(3), 333-344. https://doi.org/10.1016/j.compstruct.2008.06.009
- Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., Int. J., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Compos. Struct., Int. J., 23(1), 1-16. https://doi.org/10.12989/scs.2017.23.1.001
- Kim, K.-D., Lomboy, G.R. and Han, S.-C. (2008), "Geometrically non-linear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element", J. Compos. Mater., 42(5), 485-511. https://doi.org/10.1177/0021998307086211
- Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82(11-12), 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004
- Levyakov, S.V. and Kuznetsov, V.V. (2011), "Application of triangular element invariants for geometrically nonlinear analysis of functionally graded shells", Comput. Mech., 48(4), 499-513. https://doi.org/10.1007/s00466-011-0603-8
- Liang, K. (2017), "Koiter-Newton analysis of thick and thin laminated composite plates using a robust shell element", Compos. Struct., 161, 530-539. https://doi.org/10.1016/j.compstruct.2016.10.071
- Liu, Q. and Paavola, J. (2016), "General analytical sensitivity analysis of composite laminated plates and shells for classical and first-order shear deformation theories", Compos. Struct., 183, 21-34.
- Liu, W.K., Law, E.S., Lam, D. and Belytschko, T. (1986), "Resultant-stress degenerated-shell element", Comput. Methods Appl. Mech. Eng., 55(3), 259-300. https://doi.org/10.1016/0045-7825(86)90056-3
- Crisfield, M. (1986), Finite Elements on Solution Procedures for Structural Analysis, (I) Linear Analysis, Pineridge Press, Swansea, UK.
- Masoodi, A.R. and Arabi, E. (2018), "Geometrically nonlinear thermomechanical analysis of shell-like structures", J. Thermal Stress., 41(1), 37-53. https://doi.org/10.1080/01495739.2017.1360166
- Park, K.C. and Stanley, G.M. (1986), "A curved C0 shell element based on assumed natural-coordinate strains", J. Appl. Mech., 53(2), 278-290. https://doi.org/10.1115/1.3171752
- Pascon, J.P. and Coda, H.B. (2013), "High-order tetrahedral finite elements applied to large deformation analysis of functionally graded rubber-like materials", Appl. Math. Model., 37(20), 8757-8775. https://doi.org/10.1016/j.apm.2013.03.062
- Reddy, J.N. and Arciniega, R.A. (2004), "Shear Deformation Plate and Shell Theories: From Stavsky to Present", Mech. Adv. Mater. Struct., 11(6), 535-582. https://doi.org/10.1080/15376490490452777
- Rezaiee-Pajand, M. and Arabi, E. (2016), "A curved triangular element for nonlinear analysis of laminated shells", Compos. Struct., 153, 538-548. https://doi.org/10.1016/j.compstruct.2016.06.052
- Rezaiee-Pajand, M. and Masoodi, A.R. (2018), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932
- Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2018a), "A triangular shell element for geometrically nonlinear analysis", Acta Mechanica, 229(1), 323-342. https://doi.org/10.1007/s00707-017-1971-8
- Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018b), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/ACD.2018.3.2.165
- Sze, K.Y., Liu, X.H. and Lo, S.H. (2004), "Popular benchmark problems for geometric nonlinear analysis of shells", Finite Elem. Anal. Des., 40(11), 1551-1569. https://doi.org/10.1016/j.finel.2003.11.001
- Thai, H.-T. and Kim, S.-E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128(15), 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010
- Tiar, A., Zouari, W., Kebir, H. and Ayad, R. (2016), "A nonlinear finite element formulation for large deflection analysis of 2D composite structures", Compos. Struct., 153, 262-270. https://doi.org/10.1016/j.compstruct.2016.05.102
- Uysal, M.U. (2016), "Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells", Steel Compos. Struct., Int. J., 21(4), 849-862. https://doi.org/10.12989/scs.2016.21.4.849
- Wetherhold, R.C., Seelman, S. and Wang, J. (1996), "The use of functionally graded materials to eliminate or control thermal deformation", Compos. Sci. Technol., 56(9), 1099-1104. https://doi.org/10.1016/0266-3538(96)00075-9
- Woo, J. and Meguid, S.A. (2001), "Nonlinear analysis of functionally graded plates and shallow shells", Int. J. Solids Struct., 38(42), 7409-7421. https://doi.org/10.1016/S0020-7683(01)00048-8
- Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded shells", Int. J. Mech. Sci., 51(2), 131-144. https://doi.org/10.1016/j.ijmecsci.2008.12.004