Abstract
In this paper, for recognize a night pedestrian from an infrared video, a new method differentiated from the existing feature vector is proposed and experimented. The new approach focuses on the shape feature vector of the structure and shape of the pedestrian image divided by the human body seven split ratio. The pedestrian images are divided into 7 square blocks from the still image of the preprocessing process. And to reduce the dimension, the square block is converted into a mosaic block. The scalar and direction of the shape feature vector is calculated by the brightness and position of the element in the mosaic. For practicality of infrared video system, the proposed method simplifies the data to be processed by reducing the amount of data in the preprocessing in order to continuously batch process the entire system in real time. Through the experiments, we verified the validity of the proposed shape feature vector. In comparison to the existing method, we propose a new shape feature vector generation method as the feature vector for night pedestrian recognition.