DOI QR코드

DOI QR Code

Application of click chemistry in nanoparticle modification and its targeted delivery

  • Yi, Gawon (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Son, Jihwan (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Yoo, Jihye (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Park, Changhee (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Koo, Heebeom (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea)
  • Received : 2018.03.14
  • Accepted : 2018.04.06
  • Published : 2018.06.01

Abstract

Background: Click chemistry is termed as a group of chemical reactions with favorable reaction rate and orthogonality. Recently, click chemistry is paving the way for novel innovations in biomedical science, and nanoparticle research is a representative example where click chemistry showed its promising potential. Challenging trials with nanoparticles has been reported based on click chemistry including copper-catalyzed cycloaddition, strain-promoted azide-alkyne cycloaddition, and inverse-demand Diels-Alder reaction. Main body: Herein, we provide an update on recent application of click chemistry in nanoparticle research, particularly nanoparticle modification and its targeted delivery. In nanoparticle modification, click chemistry has been generally used to modify biological ligands after synthesizing nanoparticles without changing the function of nanoparticles. Also, click chemistry in vivo can enhance targeting ability of nanoparticles to disease site. Conclusion: These applications in nanoparticle research were hard or impossible in case of traditional chemical reactions and demonstrating the great utility of click chemistry.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012;338:903-10. https://doi.org/10.1126/science.1226338
  2. Niu Z, Conejos-Sanchez I, Griffin BT, O'Driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:337-54. https://doi.org/10.1016/j.addr.2016.04.001
  3. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61:768-84. https://doi.org/10.1016/j.addr.2009.04.016
  4. Xie J, Liu G, Eden HS, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for Cancer imaging and therapy. Acc Chem Res. 2011;44:883-92. https://doi.org/10.1021/ar200044b
  5. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064-79. https://doi.org/10.1016/j.addr.2010.07.009
  6. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615-27. https://doi.org/10.1038/nrd2591
  7. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41:2656-72. https://doi.org/10.1039/C2CS15261D
  8. Koo H, Huh MS, Sun I-C, Yuk SH, Choi K, Kim K, Kwon IC. In vivo targeted delivery of nanoparticles for Theranosis. Acc Chem Res. 2011;44:1018-28. https://doi.org/10.1021/ar2000138
  9. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63:131-5. https://doi.org/10.1016/j.addr.2010.03.011
  10. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615-26. https://doi.org/10.1016/j.addr.2008.08.005
  11. Bertozzi CR. A decade of bioorthogonal chemistry. Acc Chem Res. 2011;44:651-3. https://doi.org/10.1021/ar200193f
  12. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40:2004-21. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  13. Yoon HY, Koo H, Kim K, Kwon IC. Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomaterials. 2017;132:28-36. https://doi.org/10.1016/j.biomaterials.2017.04.003
  14. Jewett JC, Bertozzi CR. Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev. 2010;39:1272-9. https://doi.org/10.1039/b901970g
  15. Devaraj NK, Weissleder R. Biomedical applications of tetrazine cycloadditions. Acc Chem Res. 2011;44:816-27. https://doi.org/10.1021/ar200037t
  16. Majumder N. Click chemistry in nano drug delivery system and its applications in biology. IJRPC. 2015;5:95-105.
  17. Colombo M, Sommaruga S, Mazzucchelli S, Polito L, Verderio P, Galeffi P, Corsi F, Tortora P, Prosperi D. Site-specific conjugation of ScFvs antibodies to nanoparticles by bioorthogonal strain-promoted alkyne-Nitrone cycloaddition. Angew Chem Int Ed. 2012;51:496-9. https://doi.org/10.1002/anie.201106775
  18. Liu R, Zhao J, Han G, Zhao T, Zhang R, Liu B, Liu Z, Zhang C, Yang L, Zhang Z. Click-functionalized SERS Nanoprobes with improved labeling efficiency and capability for cancer cell imaging. ACS Appl Mater Interfaces. 2017;9:38222-9. https://doi.org/10.1021/acsami.7b10409
  19. Chen Y, Tezcan O, Li D, Beztsinna N, Lou B, Etrych T, Ulbrich K, Metselaar JM, Lammers T, Hennink WE. Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nano. 2017;9:10404-19.
  20. Wei J, Shuai X, Wang R, He X, Li Y, Ding M, Li J, Tan H, Fu Q. Clickable and imageable multiblock polymer micelles with magnetically guided and PEGswitched targeting and release property for precise tumor theranosis. Biomaterials. 2017;145:138-53. https://doi.org/10.1016/j.biomaterials.2017.08.005
  21. Zhang Q, Wei W, Wang P, Zuo L, Li F, Xu J, Xi X, Gao X, Ma G, Xie H-y. Biomimetic magnetosomes as versatile artificial antigen-presenting cells to potentiate T-cell-based anticancer therapy. ACS Nano. 2017;11:10724-32. https://doi.org/10.1021/acsnano.7b04955
  22. Bao C, Yin Y, Zhang Q. Synthesis and assembly of laccase-polymer giant amphiphiles by self-catalyzed CuAAC click chemistry. Biomacromolecules. 2018;in press.
  23. Koo H, Lee S, Na JH, Kim SH, Hahn SK, Choi K, Kwon IC, Jeong SY, Kim K. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew Chem Int Ed. 2012;51:11836-40. https://doi.org/10.1002/anie.201206703
  24. Lee S, Koo H, Na JH, Han SJ, Min HS, Lee SJ, Kim SH, Yun SH, Jeong SY, Kwon IC, Choi K, Kim K. Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry. ACS Nano. 2014;8: 2048-63. https://doi.org/10.1021/nn406584y
  25. Wang H, Wang R, Cai K, He H, Liu Y, Yen J, Wang Z, Xu M, Sun Y, Zhou X, Yin Q, Tang L, Dobrucki IT, Dobrucki LW, Chaney EJ, Boppart SA, Fan TM, Lezmi S, Chen X, Yin L, Cheng J. Selective in vivo metabolic cell-labelingmediated cancer targeting. Nat Chem Biol. 2017;13:415-24. https://doi.org/10.1038/nchembio.2297
  26. Du L, Qin H, Ma T, Zhang T, Xing D. In vivo imaging-guided photothermal/photoacoustic synergistic therapy with bioorthogonal metabolic glycoengineering-activated tumor targeting nanoparticles. ACS Nano. 2017; 11:8930-43. https://doi.org/10.1021/acsnano.7b03226
  27. Alcaraz N, Liu Q, Hanssen E, Johnston A, Boyd BJ. Clickable cubosomes for antibody-free drug targeting and imaging applications. Bioconjug Chem. 2018;29:149-57. https://doi.org/10.1021/acs.bioconjchem.7b00659
  28. Wang M, Svatunek D, Rohlfing K, Liu Y, Wang H, Giglio B, Yuan H, Wu Z, Li Z, Fox J. Conformationally strained trans-cyclooctene (sTCO) enables the rapid construction of (18)F-PET probes via tetrazine ligation. Theranostics. 2016;6:887-95. https://doi.org/10.7150/thno.14742

Cited by

  1. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications vol.15, pp.5, 2018, https://doi.org/10.1007/s13770-018-0152-8
  2. Recent trends in click chemistry as a promising technology for virus-related research vol.256, pp.None, 2018, https://doi.org/10.1016/j.virusres.2018.08.003
  3. Application of black phosphorus nanodots to live cell imaging vol.22, pp.1, 2018, https://doi.org/10.1186/s40824-018-0142-x
  4. Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery vol.1, pp.12, 2018, https://doi.org/10.1021/acsanm.8b01686
  5. Development of 99mTc-Labeled Human Serum Albumin with Prolonged Circulation by Chelate-then-Click Approach: A Potential Blood Pool Imaging Agent vol.16, pp.4, 2018, https://doi.org/10.1021/acs.molpharmaceut.8b01258
  6. Multifunctional Gd-based mesoporous silica nanotheranostic for anticancer drug delivery vol.7, pp.19, 2018, https://doi.org/10.1039/c9tb00375d
  7. Small, Clickable, and Monovalent Magnetofluorescent Nanoparticles Enable Mechanogenetic Regulation of Receptors in a Crowded Live-Cell Microenvironment vol.19, pp.6, 2018, https://doi.org/10.1021/acs.nanolett.9b00891
  8. An overview of nanogel-based vaccines vol.18, pp.9, 2019, https://doi.org/10.1080/14760584.2019.1647783
  9. Covalent Epitope Decoration of Carbon Electrodes using Solid Phase Peptide Synthesis vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-54000-9
  10. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering vol.23, pp.1, 2019, https://doi.org/10.1186/s40824-018-0152-8
  11. Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2019.1573182
  12. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications vol.41, pp.1, 2018, https://doi.org/10.1002/marc.201900359
  13. Membrane Derived Vesicles as Biomimetic Carriers for Targeted Drug Delivery System vol.20, pp.None, 2018, https://doi.org/10.2174/1568026620666200922113054
  14. Optimized aqueous Kinugasa reactions for bioorthogonal chemistry applications vol.56, pp.13, 2020, https://doi.org/10.1039/c9cc09473c
  15. Reliability of Click Chemistry on Drug Discovery: A Personal Account vol.20, pp.4, 2018, https://doi.org/10.1002/tcr.201900027
  16. Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 2—Azides, Phthalocyanines, Subphthalocyanines and Porphyrazines vol.25, pp.7, 2018, https://doi.org/10.3390/molecules25071745
  17. Tantalum Oxide Nanoparticle-Based Mass Tag for Mass Cytometry vol.92, pp.8, 2018, https://doi.org/10.1021/acs.analchem.9b04970
  18. Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: impact on the water solubility and cytotoxicity vol.10, pp.43, 2020, https://doi.org/10.1039/d0ra02574g
  19. Biological responses to physicochemical properties of biomaterial surface vol.49, pp.15, 2018, https://doi.org/10.1039/d0cs00103a
  20. Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine vol.10, pp.9, 2018, https://doi.org/10.3390/nano10091674
  21. An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy vol.12, pp.9, 2020, https://doi.org/10.3390/pharmaceutics12090802
  22. Leveraging Immunotherapy with Nanomedicine vol.3, pp.12, 2018, https://doi.org/10.1002/adtp.202000134
  23. Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging vol.23, pp.2, 2021, https://doi.org/10.1208/s12248-021-00561-5
  24. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications vol.121, pp.13, 2018, https://doi.org/10.1021/acs.chemrev.0c00920
  25. Polymeric Delivery of Therapeutic Nucleic Acids vol.121, pp.18, 2018, https://doi.org/10.1021/acs.chemrev.0c00997
  26. Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells vol.15, pp.9, 2018, https://doi.org/10.1021/acsnano.1c05713
  27. Dually Cross-Linked Core-Shell Structure Nanohydrogel with Redox-Responsive Degradability for Intracellular Delivery vol.13, pp.12, 2018, https://doi.org/10.3390/pharmaceutics13122048