DOI QR코드

DOI QR Code

음선 역전파 기반의 선박 위치 추정

Ray backpropagation-based ship localization

  • 조성일 (한국해양대학교 해양공학과) ;
  • 변기훈 ;
  • 변성훈 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김재수 (한국해양대학교 해양공학과)
  • 투고 : 2018.05.02
  • 심사 : 2018.07.27
  • 발행 : 2018.07.31

초록

본 논문은 선박소음 데이터에 음선 역전파 기법을 적용하여 수동 선박 위치 추정 알고리듬을 제시한다. 기존의 방법 [S. H. Abadi, D. Rouseff and D. R. Dowling, J. Acoust. Soc. Am. 131, 2599-2610 (2012)]은 음선 기반 블라인드 디컨벌루션 및 음선 역전파 기법을 활용하여 배열의 기울기가 없는 근거리 환경에서 음원의 위치를 추정하였다. 하지만 위 방법은 배열의 기울기에 따른 위치 추정 오차가 크게 발생한다는 단점이 존재한다. 이를 극복하기 위해 본 논문에서는 음선 기반 블라인드 디컨벌루션 및 음선 역전파 기법을 사용하되, 배열의 기울기를 보정하여 음원의 위치를 추정할 수 있는 알고리듬을 제안한다. 제안된 알고리듬의 성능은 SAVEX15(Shallow-water Acoustic Variability EXperiment in 2015)해상 실험의 선박소음 데이터를 이용하여 검증하였다.

This paper presents an algorithm for passive localization of a ship by applying the ray back-propagation technique to the ship radiation noise data. The previous method [S. H. Abadi, D. Rouseff and D. R. Dowling, J. Acoust. Soc. Am. 131, 2599-2610 (2012)] estimates the position of a sound source in the near-field environment with no array tilt by using the RBD (Ray-based Blind Deconvolution) and ray back-propagation techniques. However, when there exists an array tilt, the above method leads to a large position estimation error. In order to overcome the problem, this study proposes an algorithm that estimates the position of a sound source by correcting the array tilt using the RBD and ray back-propagation techniques. The proposed algorithm was verified by using the ship noise of SAVEX15 (Shallow-water Acoustic Variability EXperiment in 2015) experimental data.

키워드

참고문헌

  1. H. P. Bucker, "Use of calculated sound fields and matched-field detection to locate sound sources in shallow water," J. Acoust. Soc. Am. 59, 368-373 (1976). https://doi.org/10.1121/1.380872
  2. A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, "An overview of matched field methods in ocean acoustics," IEEE J. Ocean. Eng. 18, 401-424 (1993). https://doi.org/10.1109/48.262292
  3. D. R. Del Balzo, C. Feuillade, and M. M. Rowe, "Effects of water-depth mismatch on matched-field localization in shallow water," J. Acoust. Soc. Am. 83, 2180-2185 (1988). https://doi.org/10.1121/1.396346
  4. B. M. Worthmann, H. C. Song, and D. R. Dowling, "High frequency source localization in a shallow ocean sound channel using frequency-difference matched field processing," J. Acoust. Soc. Am. 138, 3549-3562 (2015). https://doi.org/10.1121/1.4936856
  5. S. Lee and N. C. Makris, "The array invariant," J. Acoust. Soc. Am. 119, 336-351 (2006). https://doi.org/10.1121/1.2139074
  6. H. C. Song and C. Cho, "The relation between the waveguide invariant and array invariant," J. Acoust. Soc. Am. 138, 899-903 (2015). https://doi.org/10.1121/1.4927090
  7. C. Cho, H. C. Song, and W. S. Hodgkiss, "Robust source-range estimation using the array/waveguide invariant and a vertical array," J. Acoust. Soc. Am. 139, 63-69 (2016). https://doi.org/10.1121/1.4939121
  8. H. C. Song and C. Cho, "Array invariant-based source localization in shallow water using a sparse vertical array," J. Acoust. Soc. Am. 141, 183-188 (2017). https://doi.org/10.1121/1.4973812
  9. C. Cho and H. C. Song, "Impact of array tilt on source-range estimation in shallow water using the array invariant," J. Acoust. Soc. Am. 141, 2849-2856 (2017). https://doi.org/10.1121/1.4981776
  10. H. C. Song, C. Cho, G. Byun, and J. S. Kim, "Cascade of blind deconvolution and array invariant for robust source-range estimation," J. Acoust. Soc. Am. 141, 3270-3273 (2017). https://doi.org/10.1121/1.4983303
  11. C. Cho, H. C. Song, P. Hursky, and S. M. Jesus, "Iterative range estimation in a sloping-bottom shallow-water waveguide using the generalized array invariant," J. Acoust. Soc. Am. 142, 55-60 (2017). https://doi.org/10.1121/1.4990670
  12. G. Byun, J. S. Kim, C. Cho, H. C. Song, and S. -H. Byun, "Array invariant-based ranging of a source of opportunity," J. Acoust. Soc. Am. 142, EL286-EL291 (2017). https://doi.org/10.1121/1.5003327
  13. G. Byun, C. Cho, H. C. Song, J. S. Kim, and S. Byun, "Array invariant-based calibration of array tilt using a source of opportunity," J. Acoust. Soc. Am. 143, 1318-1328 (2018). https://doi.org/10.1121/1.5025844
  14. S. H. Abadi, D. Rouseff, and D. R. Dowling, "Blind deconvolution for robust signal estimation and approximate source localization," J. Acoust. Soc. Am. 131, 2599-2610 (2010).
  15. S. -H. Byun, Christopher M. A. Verlinder, and K. G. Sabra, "Blind deconvolution of shipping sources in an ocean waveguide," J. Acoust. Soc. Am. 141, 797-807 (2017). https://doi.org/10.1121/1.4976046
  16. K. G. Sabra and D. R. Dowling, "Blind sound channel deconvolution using artificial time reversal," J. Acoust. Soc. Am. 116, 262-271 (2004). https://doi.org/10.1121/1.1751151
  17. K. G. Sabra, H. C. Song, and D. R. Dowling, "Ray-based blind deconvolution in ocean sound channels," J. Acoust. Soc. Am. 127, EL42-EL47 (2010). https://doi.org/10.1121/1.3284548
  18. M. B. Porter, "The BELLHOP manual and user's guide: PRELIMINARY DRAFT," Heat, Light and Sound Research, Inc, 2010.
  19. S. H. Nam, D. J. Kim, S. W. Lee, B. G. Kim, K. M. Kang, and Y. K. Cho, "Nonlinear internal wave spirals in the northern East China Sea," Sci, Rep. 8, 3473 (2018). https://doi.org/10.1038/s41598-018-21461-3