DOI QR코드

DOI QR Code

Head Pose Estimation Based on Perspective Projection Using PTZ Camera

원근투영법 기반의 PTZ 카메라를 이용한 머리자세 추정

  • 김진서 (숭실대학교 컴퓨터학과) ;
  • 이경주 (숭실대학교 컴퓨터학과) ;
  • 김계영 (숭실대학교 소프트웨어학부)
  • Received : 2018.03.27
  • Accepted : 2018.04.28
  • Published : 2018.07.31

Abstract

This paper describes a head pose estimation method using PTZ(Pan-Tilt-Zoom) camera. When the external parameters of a camera is changed by rotation and translation, the estimated face pose for the same head also varies. In this paper, we propose a new method to estimate the head pose independently on varying the parameters of PTZ camera. The proposed method consists of 3 steps: face detection, feature extraction, and pose estimation. For each step, we respectively use MCT(Modified Census Transform) feature, the facial regression tree method, and the POSIT(Pose from Orthography and Scaling with ITeration) algorithm. The existing POSIT algorithm does not consider the rotation of a camera, but this paper improves the POSIT based on perspective projection in order to estimate the head pose robustly even when the external parameters of a camera are changed. Through experiments, we confirmed that RMSE(Root Mean Square Error) of the proposed method improve $0.6^{\circ}$ less then the conventional method.

본 논문에서는 PTZ 카메라를 이용한 머리자세추정 방법에 대하여 서술한다. 회전 또는 이동에 의하여 카메라의 외부인자가 변경되면, 추정된 얼굴자세도 변한다. 본 논문에는 PTZ 카메라의 회전과 위치 변화에 독립적으로 머리자세를 추정하는 새로운 방법을 제안한다. 제안하는 방법은 얼굴검출, 특징추출 그리고 자세추정으로 이루어진다. 얼굴검출은 MCT특징을 이용해 검출하고, 얼굴 특징추출은 회귀트리 방법을 이용해 추출하고, 머리자세 추정은 POSIT 알고리즘을 사용한다. 기존의 POSIT 알고리즘은 카메라의 회전을 고려하지 않지만, 카메라의 외부인자 변화에도 강건하게 머리자세를 추정하기 위하여 본 논문은 원근투영법에 기반하여 POSIT를 개선한다. 실험을 통하여 본 논문에서 제안하는 방법이 기존의 방법 보다 RMSE가 약 $0.6^{\circ}$ 개선되는 것을 확인했다.

Keywords

References

  1. B. Czuprynski and A. Strupczewski, "High Accuracy Head Pose Tracking Survey," Proc. International Conference on Active Media Technology, pp.407-420, 2014.
  2. Z., Feng, H. B.-L. Duh, and M. Billinghurst, "Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR," IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR), Cambridge, UK. (2008 September). http://dx.doi.org/10.1109/ismar.2008.4637362.
  3. G. Fanelli, J. Gall, and L. Van Gool, "Real time head pose estimation with random regression forests," IEEE Conference on Computer Vision and Pattern Recognition, pp.617-624, 2011.
  4. C. Huang, X. Ding, and C. Fang, "Head pose estimation based on random forests for multiclass classification," International Conference on Pattern Recognition, pp.934-937, 2010.
  5. Y. Ohta, K. Maenobu, and T. Sakai, "Obtaining Surface Orientation from Texels Under Perspective Projection," Proc. Seventh Int'l Joint Conf. Artificial Intelligence, pp.746-751, 1981.
  6. R. Zabih and J. Woodfill, "Non-parametric Local Transforms for Computing Visual Correspondence," pp.151-158, 1994.
  7. Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of Computer and System Sciences, pp.119-139, 1997.
  8. V. Kazemi and J. Sullivan, "One Millisecond Face Alignment with an Ensemble of Regression Trees," The IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867-1874, 2014.
  9. D. F. Dementhon and L. S. Davis, "Model-based object pose in 25 lines of code," International Journal of Computer Vision, Vol.15, No.1-2, pp.123-141, 1995. https://doi.org/10.1007/BF01450852
  10. S. G. Kong and R. O. Mbouna, "Head Pose Estimation From a 2D Face Image Using 3D Face Morphing With Depth Parameters," IEEE Transactions on Image Processing, Vol.24, No.6, pp.1801-1808, 2015. https://doi.org/10.1109/TIP.2015.2405483
  11. Z. L. Sun, K. M. Lam, and Q. W. Gao, "Depth Estimation of Face Images Using the Nonlinear Least-Squares Model," IEEE Transactions on Image Processing, pp.17-30, 2013.
  12. P. Martins and J. Batista, "Single view head pose estimation," IEEE International Conference on Image Processing, pp. 1652-1655, 2008.
  13. T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active Appearance Models," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.681-685, 2001.
  14. T. Funahashi, M. Tominaga, T. Fujiwara, and H. Koshimizu, "Hierarchical face tracking by using PTZ camera," IEEE International Conference on Automatic Face and Gesture Recognition, pp.427-432, 2004.
  15. S. J. Miller, "The Method of Least Squares," in Brown University, 2006.
  16. W. J. Wolfe, D. Mathis, C. W. Sklair, and M. Magee, "The perspective view of three points," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.66-73, 1991.