References
- Abazid, M.A. and Sobhy, M. (2018), "Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory", Microsyst. Technol., 24(2), 1227-1245. https://doi.org/10.1007/s00542-017-3492-8
- Alibeigloo, A. and Liew, K.M. (2014), "Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity", Compos. Struct., 113, 23-30. https://doi.org/10.1016/j.compstruct.2014.03.004
- Anderson, T.A. (2003), "A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere", Compos. Struct., 60(3), 265-274. https://doi.org/10.1016/S0263-8223(03)00013-8
- Aragh, B.S. and Yas, M.H. (2011), "Effect of continuously grading fiber orientation face sheets on vibration of sandwich panels with FGM core", Int. J. Mech. Sci., 53(8), 628-638. https://doi.org/10.1016/j.ijmecsci.2011.05.009
- Arefi, M. and Zenkour, A.M. (2016), "Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic facesheets", Smart Mater. Struct., 25(11), 115040. https://doi.org/10.1088/0964-1726/25/11/115040
- Arefi, M. and Zenkour, A.M. (2017a), "Influence of micro-lengthscale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko's sandwich piezoelectric microbeam", J. Sandw. Struct. Mater., 1099636217714181.
- Arefi, M. and Zenkour, A.M. (2017b), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A, 123(3), 202.
- Arefi, M. and Zenkour, A.M. (2017c), "Thermo-electromechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071
- Arefi, M. and Zenkour, A.M. (2017d), "Vibration and bending analysis of a sandwich microbeam with two integrated piezomagnetic face-sheets", Compos. Struct., 159, 479-490. https://doi.org/10.1016/j.compstruct.2016.09.088
- Arefi, M. and Zenkour, A.M. (2017e), "Nonlocal electro-thermomechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta Mech., 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0
- Arefi, M. and Zenkour, A.M. (2017f), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 1099636217697497.
- Arefi, M. and Zenkour, A.M. (2017g), "Size-dependent electroelastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intell. Mater. Syst. Struct., 1045389X17733333.
- Arefi, M. and Zenkour, A.M. (2017h), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B, 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
- Arefi, M. and Zenkour, A.M. (2017i), "Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation", Appl. Phys. A, 123(8), 550. https://doi.org/10.1007/s00339-017-1156-2
- Arefi, M. and Zenkour, A.M. (2017j), "Thermo-electro-magnetomechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates", Mech. Res. Comm., 84, 27-42. https://doi.org/10.1016/j.mechrescom.2017.06.002
- Arefi, M., and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. https://doi.org/10.12989/SCS.2018.26.4.421
- Arefi, M., Bidgoli, E.M.R. and Zenkour, A.M. (2018), "Free vibration analysis of a sandwich nano-plate including FG core and piezoelectric face-sheets by considering neutral surface", Mech. Adv. Mater. Struct., 1-12.
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. and Ciuffreda, A. (2005), "A unified formulation to assess theories of multilayered plates for various bending problems", Compos. Struct., 69(3), 271-293. https://doi.org/10.1016/j.compstruct.2004.07.003
- Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251
- Cheng, Z.Q. and Batra, R.C. (2000), "Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates", J. Sound Vibr., 229(4), 879-895. https://doi.org/10.1006/jsvi.1999.2525
- Cunedioglu, Y. (2015), "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", Struct. Eng. Mech., 56(6), 1003-1020. https://doi.org/10.12989/sem.2015.56.6.1003
- Das, M., Barut, A., Madenci, E. and Ambur, D.R. (2006), "A triangular plate element for thermo-elastic analysis of sandwich panels with a functionally graded core", Int. J. Numer. Meth. Eng., 68(9), 940-966. https://doi.org/10.1002/nme.1724
- Dozio, L. (2013), "Natural frequencies of sandwich plates with FGM core via variable-kinematic 2-D Ritz models", Compos. Struct., 96, 561-568. https://doi.org/10.1016/j.compstruct.2012.08.016
- Fard, K.M. (2014), "Higher order free vibration of sandwich curved beams with a functionally graded core", Struct. Eng. Mech., 49(5), 537-554. https://doi.org/10.12989/sem.2014.49.5.537
- Ferreira, A.J.M., Castro L.M.S. and Bertoluzza, S. (2003), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 34, 627-636.
- Houari, M.S.A., Tounsi, A. and Anwer, B. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behavior of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Sol. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Kashtalyan, M. and Menshykova, M. (2009), "Three-dimensional elasticity solution for sandwich panels with a functionally graded core", Compos. Struct., 87(1), 36-43. https://doi.org/10.1016/j.compstruct.2007.12.003
- Kirugulige, M.S., Kitey, R. and Tippur, H.V. (2005), "Dynamic fracture behavior of model sandwich structures with functionally graded core: A feasibility study", Compos. Sci. Technol., 65(7), 1052-1068. https://doi.org/10.1016/j.compscitech.2004.10.029
- Li, D., Deng, Z., Xiao, H. and Zhu, L. (2018), "Thermomechanical bending analysis of functionally graded sandwich plates with both functionally graded face sheets and functionally graded cores", Mech. Adv. Mater. Struct., 25(3), 179-191. https://doi.org/10.1080/15376494.2016.1255814
- Li, Q., Lu, V. and Kou, K. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vibr., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018
- Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 1099636217698443.
- Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Fin. Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006
- Radwan, A.F. (2017), "Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory", J. Sandw. Struct. Mater., 1099636217693557.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. Trans., 12, 69-77.
- Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146. https://doi.org/10.2514/2.1622
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
- Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003
- Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/SEM.2017.63.3.401
- Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089
- Sofiyev, A.H. (2014), "The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure", Compos. Struct., 117, 124-134. https://doi.org/10.1016/j.compstruct.2014.06.025
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-220. https://doi.org/10.1007/BF01176650
- Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-81. https://doi.org/10.1016/j.apm.2012.08.008
- Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-20. https://doi.org/10.1016/j.ast.2011.11.009
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Zenkour, A.M. (2004), "Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory", Acta Mech., 171(3-4), 171-187. https://doi.org/10.1007/s00707-004-0145-7
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1, deflection and stresses, part 2-buckling and free vibration", Int. J. Sol. Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
- Zenkour, A.M. (2007), "Elastic deformation of the rotating functionally graded annular disk with rigid casing", J. Mater. Sci., 42, 9717-9724. https://doi.org/10.1007/s10853-007-1946-6
- Zenkour, A.M. (2009a), "The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates", Int. J. Appl. Mech., 1(4), 667-707. https://doi.org/10.1142/S1758825109000368
- Zenkour, A.M. (2009b), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11-12), 869-880 https://doi.org/10.1016/j.ijmecsci.2009.09.026
- Zenkour, A.M. and Alghamdi, N.A. (2008), "Thermoelastic bending analysis of functionally graded sandwich plates", J. Mater. Sci., 43(8), 2574-2589 https://doi.org/10.1007/s10853-008-2476-6
- Zenkour, A.M. and Arefi, M. (2017), "Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation", J. Therm. Stress., 40(2), 167-184. https://doi.org/10.1080/01495739.2016.1229146
- Zenkour, A.M. and Sobhy, M. (2012), "Elastic foundation analysis of uniformly loaded functionally graded viscoelastic sandwich plates", J. Mech., 28(3), 439-452. https://doi.org/10.1017/jmech.2012.53
- Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mech., 212(3-4), 233-252. https://doi.org/10.1007/s00707-009-0252-6
Cited by
- The Nonlocal Strain Gradient Theory for Hygrothermo-Electromagnetic Effects on Buckling, Vibration and Wave Propagation in Piezoelectromagnetic Nanoplates vol.11, pp.7, 2018, https://doi.org/10.1142/s1758825119500674
- Size-Dependent Hygro-Thermal Buckling of Porous FGM Sandwich Microplates and Microbeams Using a Novel Four-Variable Shear Deformation Theory vol.12, pp.2, 2020, https://doi.org/10.1142/s1758825120500179