DOI QR코드

DOI QR Code

Numerical Prediction of Temperature-Dependent Flow Stress on Fiber Metal Laminate using Artificial Neural Network

인공신경망을 사용한 섬유금속적층판의 온도에 따른 유동응력에 대한 수치해석적 예측

  • Received : 2018.04.13
  • Accepted : 2018.07.18
  • Published : 2018.08.01

Abstract

The flow stresses have been identified prior to a numerical simulation for predicting a deformation of materials using the experimental or analytical analysis. Recently, the flow stress models considering the temperature effect have been developed to reduce the number of experiments. Artificial neural network can provide a simple procedure for solving a problem from the analytical models. The objective of this paper is the prediction of flow stress on the fiber metal laminate using the artificial neural network. First, the training data were obtained by conducting the uniaxial tensile tests at the various temperature conditions. After, the artificial neural network has been trained by Levenberg-Marquardt method. The numerical results of the trained model were compared with the analytical models predicted at the previous study. It is noted that the artificial neural network can predict flow stress effectively as compared with the previously-proposed analytical models.

Keywords

References

  1. G. Wu, J. -M. Yang, 2005, The Mechanical Behavior of GLARE Laminates for Aircraft Structures, JOM., Vol. 57, No. 1, pp. 72-79. https://doi.org/10.1007/s11837-005-0067-4
  2. H. S. Choi, H. S. Roh, G. H. Kang, M. S. Ha, 2004, Study on the Thermo-Mechanical Behaviors of Fiber Metal Laminates using the Classical Lamination Theory, Trans. Kor. Soc. Mec. Eng, Vol. 28, No. 4, pp. 394-401. https://doi.org/10.3795/KSME-A.2004.28.4.394
  3. L. B. Vogelesang, A. Vlot, 2000, Development of Fibre Metal Laminates for Advanced Aerospace Structures, J. Mater. Process. Technol., Vol. 103, No. 1, pp. 1-5. https://doi.org/10.1016/S0924-0136(00)00411-8
  4. R. Desnoo, 2015, Master Thesis, Carleton University, Ottawa, Canada, pp. 1-134.
  5. Y. C. Lin, X. M. Chen, 2011, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., Vol. 32, No. 4, pp. 1733-1759. https://doi.org/10.1016/j.matdes.2010.11.048
  6. J. H. Hollomon, 1945, Tensile Deformation, Trans. AIME, Vol. 12, No. 4, pp. 1-22.
  7. P. Ludwik, 1909, Elemente der Technologischen Mechanik, Springer-Verlag, Berlin, pp. 1-57.
  8. E. Voce, A Practical Strain-Hardening Function, 1955, Metallurgia, Vol. 51, No. 307, pp. 219-226.
  9. G. R. Johnson, W. H. Cook, 1983, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proc. 7th Int. Symp. on Ballistics, Vol. 21, No. 1, pp. 541-547.
  10. F. J. Zerilli, R. W. Armstrong, 1987, Dislocation-Mechanics Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., Vol. 61, No. 5, pp. 1816-1825. https://doi.org/10.1063/1.338024
  11. A. He, G. Xie, H. Zhang, X. Wang, 2013, A Comparative Study on Johnson-Cook and Arrhenius-Type Constitutive Models to Predict the High Temperature Flow Stress in 20CrMo Alloy Steel, Mater. Des., Vol. 52, pp. 677-685. https://doi.org/10.1016/j.matdes.2013.06.010
  12. W. J. Song, S. C. Heo, T. W. Ku, B. S. Kang, J. Kim, 2011, Trans. Mater. Process., Vol. 20, No. 3, pp. 229-235. https://doi.org/10.5228/KSTP.2011.20.3.229
  13. E. T. Park, B. E. Lee, D. S. Kang, J. Kim, B. S. Kim, W. J. Song, 2015, Evaluation of the Temperature Dependent Flow Stress Model for Thermoplastic Fiber Meteal Laminates, Trans. Mater. Process., Vol. 24, No. 1, pp. 52-61. https://doi.org/10.5228/KSTP.2015.24.1.52
  14. E. T. Park, B. E. Lee, D. S. Kang, J. Kim, B. S. Kang, W. J. Song, 2016, Analytical Prediction of Flow Stress on Aluminum Alloy/Self-Reinforced Polypropylene Laminated Sheet Material Considering Temperature-Dependent Material Constants, Int. J. Precis. Eng. Manuf., Vol. 17, No. 4, pp. 487-493. https://doi.org/10.1007/s12541-016-0061-5
  15. J. J. Hox, 2010, Multilevel Analysis: Techniques and Applications, Routledge, New York. pp. 1-39.
  16. G. Quan, C. Yu, 2014, A Comparative Study on Improved Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Flow Behaviors in 20MnNiMo Alloy, Scientific World Journal, Vol. 2014, pp. 1-12.
  17. S. -H. Song, Y. B. Kim, S. -Y. Lee, 2018, Study on the High Temperature Deformation of Incoloy 825 Alloy using an Artificial Neural Network, J. Kor. Soc. Manuf. Technol. Eng., Vol. 27, No. 1, pp. 41-45.
  18. ASTM Standard D3039, 2011, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, DOI: 10.1520/E0008_E0008M-11.
  19. ASTM Standard E21, 2009, Standard Test Method for Elevated Temperature Tension Tests of Metallic Materials, ASTM International, DOI: 10.1520/E0021-09.
  20. H. Gavin, 2011, The Levenberg-Marquardt Method for Nonlinear Least Squares Curve-Fitting Problems, Department of Civil and Environmental Engineering, Duke University, pp. 1-15.
  21. G. James, D. Witten, T. Hastie, R. Tibshirani, 2013, An Introduction to Statistical Learning, Springer, New York, pp. 1-418.