DOI QR코드

DOI QR Code

RNA-Seq De Novo Assembly and Differential Transcriptome Analysis of Korean Medicinal Herb Cirsium japonicum var. spinossimum

  • Roy, Neha Samir (Department of Agriculture and Life Industry, Kangwon National University) ;
  • Kim, Jung-A (Biological Resources Assessment Division, National Institute of Biological Resources) ;
  • Choi, Ah-Young (DNACare Genomics Institute) ;
  • Ban, Yong-Wook (Department of Forest Environmental System, Kangwon National University) ;
  • Park, Nam-Il (Department of Plant Science, Gangneung Wonju National University) ;
  • Park, Kyong-Cheul (Department of Agriculture and Life Industry, Kangwon National University) ;
  • Yang, Hee-sun (Biological Resources Assessment Division, National Institute of Biological Resources) ;
  • Choi, Ik-Young (Department of Agriculture and Life Industry, Kangwon National University) ;
  • Kim, Soonok (Biological Resources Assessment Division, National Institute of Biological Resources)
  • Received : 2018.12.10
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

Cirsium japonicum belongs to the Asteraceae or Compositae family and is a medicinal plant in Asia that has a variety of effects, including tumour inhibition, improved immunity with flavones, and antidiabetic and hepatoprotective effects. Silymarin is synthesized by 4-coumaroyl-CoA via both the flavonoid and phenylpropanoid pathways to produce the immediate precursors taxifolin and coniferyl alcohol. Then, the oxidative radicalization of taxifolin and coniferyl alcohol produces silymarin. We identified the expression of genes related to the synthesis of silymarin in C. japonicum in three different tissues, namely, flowers, leaves, and roots, through RNA sequencing. We obtained 51,133 unigenes from transcriptome sequencing by de novo assembly using Trinity v2.1.1, TransDecoder v2.0.1, and CD-HIT v4.6 software. The differentially expressed gene analysis revealed that the expression of genes related to the flavonoid pathway was higher in the flowers, whereas the phenylpropanoid pathway was more highly expressed in the roots. In this study, we established a global transcriptome dataset for C. japonicum. The data shall not only be useful to focus more deeply on the genes related to product medicinal metabolite including flavolignan but also to study the functional genomics for genetic engineering of C. japonicum.

Keywords

References

  1. Ge H, Turhong M, Abudkrem M, Tang Y. Fingerprint analysis of Cirsium japonicum DC. using high performance liquid chromatography. J Pharm Anal 2013;3:278-284 https://doi.org/10.1016/j.jpha.2012.12.004
  2. Liu S, Luo X, Li D, Zhang J, Qiu D, Liu W, et al. Tumor inhibition and improved immunity in mice treated with flavone from Cirsium japonicum DC. Int Immunopharmacol 2006;6:1387-1393. https://doi.org/10.1016/j.intimp.2006.02.002
  3. Federico A, Dallio M, Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules 2017;22:E191. https://doi.org/10.3390/molecules22020191
  4. Loguercio C, Festi D. Silybin and the liver: from basic research to clinical practice. World J Gastroenterol 2011;17:2288-2301. https://doi.org/10.3748/wjg.v17.i18.2288
  5. Kim NC, Graf TN, Sparacino CM, Wani MC, Wall ME. Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum). Org Biomol Chem 2003;1:1684-1689. https://doi.org/10.1039/b300099k
  6. Ma Q, Wang LH, Jiang JG. Hepatoprotective effect of flavonoids from Cirsium japonicum DC on hepatotoxicity in comparison with silymarin. Food Funct 2016;7:2179-2184. https://doi.org/10.1039/C6FO00068A
  7. WoRMS. Cirsium japonicum var. spinosissimum Kitam. WoRMS, 2008. Accessed 2018 Nov 1. Available from: http://www.marinespecies.org/aphia.php?p=taxdetails&id=1157330.
  8. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol 2003;54:519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938
  9. Morazzoni P, Bombardelli E. Silybum marianum (Carduus marianus). Fitoterapia 1995;66:3-42.
  10. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, et al. Plant flavonoids: biosynthesis, transport and involvement in stress responses. Int J Mol Sci 2013;14:14950-14973. https://doi.org/10.3390/ijms140714950
  11. Nakasugi K, Crowhurst RN, Bally J, Wood CC, Hellens RP, Waterhouse PM. De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS One 2013;8:e59534. https://doi.org/10.1371/journal.pone.0059534
  12. Lehnert EM, Walbot V. Sequencing and de novo assembly of a Dahlia hybrid cultivar transcriptome. Front Plant Sci 2014;5:340.
  13. Rastogi S, Meena S, Bhattacharya A, Ghosh S, Shukla RK, Sangwan NS, et al. De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genomics 2014;15:588. https://doi.org/10.1186/1471-2164-15-588
  14. Wilhelm BT, Marguerat S, Goodhead I, Bahler J. Defining transcribed regions using RNA-seq. Nat Protoc 2010;5:255-266. https://doi.org/10.1038/nprot.2009.229
  15. Martinez-Garcia PJ, Crepeau MW, Puiu D, Gonzalez-Ibeas D, Whalen J, Stevens KA, et al. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. Plant J 2016;87:507-532. https://doi.org/10.1111/tpj.13207
  16. Liu MH, Yang BR, Cheung WF, Yang KY, Zhou HF, Kwok JS, et al. Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 2015;16:265. https://doi.org/10.1186/s12864-015-1477-5
  17. Lulin H, Xiao Y, Pei S, Wen T, Shangqin H. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS One 2012;7:e38653. https://doi.org/10.1371/journal.pone.0038653
  18. Upadhyay AK, Chacko AR, Gandhimathi A, Ghosh P, Harini K, Joseph AP, et al. Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol 2015;15:212. https://doi.org/10.1186/s12870-015-0562-x
  19. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-140. https://doi.org/10.1093/bioinformatics/btp616
  20. AbouZid SF, Ahmed HS, Moawad AS, Owis AI, Chen SN, Nachtergael A, et al. Chemotaxonomic and biosynthetic relationships between flavonolignans produced by Silybum marianum populations. Fitoterapia 2017;119:175-184. https://doi.org/10.1016/j.fitote.2017.04.002
  21. Lv Y, Gao S, Xu S, Du G, Zhou J, Chen J. Spatial organization of silybin biosynthesis in milk thistle [Silybum marianum (L.) Gaertn]. Plant J 2017;92:995-1004. https://doi.org/10.1111/tpj.13736
  22. Mudalkar S, Golla R, Ghatty S, Reddy AR. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol Biol 2014;84:159-171. https://doi.org/10.1007/s11103-013-0125-1
  23. Yang Y, Xu M, Luo Q, Wang J, Li H. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Gene 2014;534:155-162. https://doi.org/10.1016/j.gene.2013.10.073
  24. Zhu L, Zhang Y, Guo W, Xu XJ, Wang Q. De novo assembly and characterization of Sophora japonica transcriptome using RNA-seq. Biomed Res Int 2014;2014:750961.
  25. Zhang X, Allan AC, Li C, Wang Y, Yao Q. De novo assembly and characterization of the transcriptome of the Chinese medicinal herb, Gentiana rigescens. Int J Mol Sci 2015;16:11550-11573. https://doi.org/10.3390/ijms160511550
  26. Zhang X, Liu T, Duan M, Song J, Li X. De novo transcriptome analysis of Sinapis alba in revealing the glucosinolate and phytochelatin pathways. Front Plant Sci 2016;7:259.
  27. Sun H, Li F, Xu Z, Sun M, Cong H, Qiao F, et al. De novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L. PLoS One 2017;12:e0182243. https://doi.org/10.1371/journal.pone.0182243
  28. Acquadro A, Barchi L, Portis E, Mangino G, Valentino D, Mauromicale G, et al. Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci Rep 2017;7:5617. https://doi.org/10.1038/s41598-017-05085-7
  29. Scaglione D, Lanteri S, Acquadro A, Lai Z, Knapp SJ, Rieseberg L, et al. Large-scale transcriptome characterization and mass discovery of SNPs in globe artichoke and its related taxa. Plant Biotechnol J 2012;10:956-969. https://doi.org/10.1111/j.1467-7652.2012.00725.x
  30. Hartmann T. Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 2004;219:1-4. https://doi.org/10.1007/s00425-004-1249-y
  31. Goyal S, Lambert C, Cluzet S, Merillon JM, Ramawat KG. Secondary metabolites and plant defence. In: Plant Defence: Biological Control (Merillon JM, Ramawat KG, eds.). Dordrecht: Springer, 2012. pp. 109-138.